Fullerene-driven encapsulation of a luminescent Eu(III) complex in carbon nanotubes.

A novel CNT-based hybrid luminescent material was obtained via encapsulation of a C60-based Eu(III) complex into single-, double- and multi-walled carbon nanotubes (SWCNTs, DWCNTs and MWCNTs, respectively). Specifically, a luminescent negatively charged Eu(III) complex, electrostatically bonded to an imidazolium-functionalized fullerene cage, was transported inside CNTs by exploiting the affinity of fullerenes for the inner surface of these carbonaceous containers. The filling was performed under supercritical CO2 (scCO2) conditions to facilitate the entrapment of the ion-paired assembly. Accurate elemental, spectroscopic and morphological characterization not only demonstrated the efficiency of the filling strategy, but also the occurrence of nano-ordering of the encapsulated supramolecular luminophores when SWCNTs were employed.

[1]  Rudi Hackl,et al.  Interactions and chemical transformations of coronene inside and outside carbon nanotubes. , 2014, Small.

[2]  R. Marega,et al.  Filling carbon nanotubes for nanobiotechnological applications , 2014 .

[3]  K. Raghu,et al.  A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission. , 2013, Dalton transactions.

[4]  Zhi Yang,et al.  Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties , 2013 .

[5]  Y. Ishida,et al.  Anisotropically Luminescent Hydrogels Containing Magnetically‐Aligned MWCNTs‐Eu(III) Hybrids , 2013, Advanced materials.

[6]  J. Mohanraj,et al.  Luminophores and Carbon Nanotubes: An Odd Combination? , 2013, The journal of physical chemistry letters.

[7]  B. Simándi,et al.  Low‐temperature encapsulation of coronene in carbon nanotubes , 2012 .

[8]  B. Yan Recent progress in photofunctional lanthanide hybrid materials , 2012 .

[9]  Yasumitsu Miyata,et al.  Dimerization-Initiated Preferential Formation of Coronene-Based Graphene Nanoribbons in Carbon Nanotubes , 2012 .

[10]  F. Toma,et al.  Luminescent blooming of dendronic carbon nanotubes through ion-pairing interactions with an Eu(III) complex. , 2012, Chemistry.

[11]  M. Pietraszkiewicz,et al.  Eu(III)-coupled luminescent multi-walled carbon nanotubes in surfactant solutions , 2012 .

[12]  Laura Maggini,et al.  Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions. , 2012, Chemical Society reviews.

[13]  A. Khlobystov,et al.  Carbon nanotubes: from nano test tube to nano-reactor. , 2011, ACS nano.

[14]  A. Krasheninnikov,et al.  Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. , 2011, Nano letters.

[15]  J. Mohanraj,et al.  A luminescent host-guest hybrid between a Eu(III) complex and MWCNTs. , 2011, Chemistry.

[16]  C. Ambrosch-Draxl,et al.  Electronic interactions between "pea" and "pod": the case of oligothiophenes encapsulated in carbon nanotubes. , 2011, Small.

[17]  S. Okada,et al.  Coaxially stacked coronene columns inside single-walled carbon nanotubes. , 2011, Angewandte Chemie.

[18]  A. J. Blake,et al.  Encapsulation of transition metal atoms into carbon nanotubes: a supramolecular approach. , 2011, Chemical communications.

[19]  Balaji Sitharaman,et al.  Time-resolved red luminescence from europium-catalyzed single walled carbon nanotubes. , 2011, Chemical communications.

[20]  M. Pietraszkiewicz,et al.  Electrostatically-driven assembly of MWCNTs with a europium complex. , 2011, Chemical communications.

[21]  N. Champness,et al.  A piggyback ride for transition metals: encapsulation of exohedral metallofullerenes in carbon nanotubes. , 2011, Chemistry.

[22]  J. Bünzli,et al.  Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion , 2010 .

[23]  B. Simándi,et al.  Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy , 2010 .

[24]  X. Qu,et al.  Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement , 2010 .

[25]  T. Hiyama,et al.  Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. , 2010, Chemistry, an Asian journal.

[26]  Douglas R. Kauffman,et al.  Decorated carbon nanotubes with unique oxygen sensitivity. , 2009, Nature chemistry.

[27]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[28]  M. Prato,et al.  Organic functionalisation and characterisation of single-walled carbon nanotubes. , 2009, Chemical Society reviews.

[29]  L. Carlos,et al.  Structural and photoluminescence studies of a europium(III) tetrakis(beta-diketonate) complex with tetrabutylammonium, imidazolium, pyridinium and silica-supported imidazolium counterions. , 2009, Inorganic chemistry.

[30]  M. Prato,et al.  Cap removal and shortening of double-walled and very-thin multi-walled carbon nanotubes under mild oxidative conditions , 2009 .

[31]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.

[32]  Hui Wu,et al.  Coating multi-walled carbon nanotubes with rare-earth complexes by an in situ synthetic method , 2008, Nanotechnology.

[33]  M. Prato,et al.  Wet Adsorption of a Luminescent EuIII complex on Carbon Nanotubes Sidewalls , 2007 .

[34]  S. Quici,et al.  Photophysical properties and tunable colour changes of silica single layers doped with lanthanide(III) complexes. , 2007, Chemical communications.

[35]  S. Iijima,et al.  Imaging active topological defects in carbon nanotubes. , 2007, Nature nanotechnology.

[36]  K. Driesen,et al.  Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks , 2006 .

[37]  Nobuo Tanaka,et al.  Direct observation of six-membered rings in the upper and lower walls of a single-wall carbon nanotube by spherical aberration-corrected HRTEM. , 2006, Nano letters.

[38]  M. Prato,et al.  Microscopic and spectroscopic characterization of paintbrush-like single-walled carbon nanotubes. , 2006, Nano letters.

[39]  A. Khlobystov,et al.  Noncovalent interactions of molecules with single walled carbon nanotubes. , 2006, Chemical Society reviews.

[40]  H. Kataura,et al.  Highly Stabilized β‐Carotene in Carbon Nanotubes , 2006 .

[41]  W. Wang,et al.  Luminescent Carbon Nanotubes by Surface Functionalization , 2006, Advanced Materials.

[42]  José A Fernandes,et al.  Highly Luminescent Tris(β-diketonate)europium(III) Complexes Immobilized in a Functionalized Mesoporous Silica , 2005 .

[43]  K. Driesen,et al.  Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids. , 2005, Chemical communications.

[44]  A. Døssing Luminescence from Lanthanide(3+) Ions in Solution , 2005 .

[45]  S. Quici,et al.  Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] complexes. , 2005, Inorganic chemistry.

[46]  M. Poliakoff,et al.  Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids , 2004 .

[47]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[48]  W. Sigmund,et al.  Functionalized multiwall carbon nanotube/gold nanoparticle composites. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[49]  S. Quici,et al.  New lanthanide complexes for sensitized visible and near-IR light emission: synthesis, 1H NMR, and X-ray structural investigation and photophysical properties. , 2004, Inorganic chemistry.

[50]  T. Ichihashi,et al.  Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases , 2003 .

[51]  T. Pichler,et al.  Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT , 2003, cond-mat/0310110.

[52]  Hiromichi Kataura,et al.  Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes , 2003, Nature materials.

[53]  T. Hertel,et al.  Interaction of C60 with carbon nanotubes and graphite. , 2003, Physical review letters.

[54]  M. Yudasaka,et al.  Thermogravimetric analysis for the array of C60 molecules formed in single-wall carbon nanotube , 2003 .

[55]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[56]  M. Maroncelli,et al.  Solvation and Friction in Supercritical Fluids: Simulation−Experiment Comparisons in Diphenyl Polyene/CO2 Systems , 2002 .

[57]  D. Tománek,et al.  Microscopic formation mechanism of nanotube peapods. , 2002, Physical review letters.

[58]  Christiane Görller-Walrand,et al.  Lanthanide-containing liquid crystals and surfactants. , 2002, Chemical reviews.

[59]  Miroslav Hodak,et al.  Van der Waals binding energies in graphitic structures , 2002 .

[60]  Robert H. Hauge,et al.  Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process) , 2001 .

[61]  P. Audebert,et al.  Photostability study of europium dibenzolymethide embedded in polystyrene thin films with high concentration , 2000 .

[62]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[63]  J. H. Forsberg Complexes of lanthanide (III) ions with nitrogen donor ligands , 1973 .

[64]  M. Reddy,et al.  Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walled carbon nanotubes , 2013 .

[65]  Yao Wang,et al.  Fluorescent nanoblocks of lanthanide complexes on nano silicon dioxide and carbon nanotube donors with ligand–antenna integration (ALI) structure , 2009 .

[66]  Thorfinnur Gunnlaugsson,et al.  Photochemistry and Photophysics of Coordination Compounds: Lanthanides , 2007 .

[67]  A. Beeby,et al.  Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states , 1999 .

[68]  J. Williams,et al.  Getting excited about lanthanide complexation chemistry , 1996 .