A highly scalable incremental facial feature extraction method

Face recognition is one of the most challenging tasks in biometrics, machine vision, and pattern recognition. Methods that can dynamically extract facial features and perform online classification are especially important for real-world applications. The potentially most useful methods in these cases would include incremental learning techniques such as Incremental Principal Component Analysis (IPCA) and Incremental Discriminant Analysis (ILDA). In this paper, we propose a novel incremental facial feature extraction method-Incremental Weighted Average Samples (IWAS). The new method is very simple in theory and experimental results conducted on two benchmark face image databases demonstrate that it is more effective and efficient than IPCA and ILDA, making IWAS especially applicable to real-time face recognition.

[1]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[2]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[4]  J. B. Rosen,et al.  Lower Dimensional Representation of Text Data Based on Centroids and Least Squares , 2003 .

[5]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[7]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[8]  Pong C. Yuen,et al.  Regularized discriminant analysis and its application to face recognition , 2003, Pattern Recognit..

[9]  Dong Xu,et al.  Multilinear Discriminant Analysis for Face Recognition , 2007, IEEE Transactions on Image Processing.

[10]  Jian Yang,et al.  Two-dimensional discriminant transform for face recognition , 2005, Pattern Recognit..

[11]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[12]  Jing-Yu Yang,et al.  Face recognition based on the uncorrelated discriminant transformation , 2001, Pattern Recognit..

[13]  Xuelong Li,et al.  Supervised Tensor Learning , 2005, ICDM.

[14]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[15]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[16]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[17]  Desmond J. Higham,et al.  On the Boundedness of Asymptotic Stability Regions for the Stochastic Theta Method , 2003 .

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Jian Yang,et al.  Why can LDA be performed in PCA transformed space? , 2003, Pattern Recognit..

[20]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[21]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .

[22]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[24]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Xuelong Li,et al.  Human Carrying Status in Visual Surveillance , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[27]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[28]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[29]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[30]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..