Aggregation under local reinforcement: From lattice to continuum
暂无分享,去创建一个
Dirk Horstmann | Kevin J. Painter | Hans G. Othmer | K. Painter | H. Othmer | D. Horstmann | Dirk Horstmann
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] C. Patlak. Random walk with persistence and external bias , 1953 .
[3] M. Gurtin,et al. Structured phase transitions on a finite interval , 1984 .
[4] Yin Yang,et al. On Existence of Global Solutions and Blow-Up to a System of Reaction-Diffusion Equations Modelling Chemotaxis , 2001, SIAM J. Math. Anal..
[5] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[6] Hans G. Othmer,et al. The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..
[7] L. E. Scriven,et al. Interactions of reaction and diffusion in open systems , 1969 .
[8] Nicholas D. Alikakos,et al. LP Bounds of solutions of reaction-diffusion equations , 1979 .
[9] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[10] D. Hoff,et al. LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS* , 1978 .
[11] W. Alt. Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.
[12] Satyanad Kichenassamy,et al. The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..
[13] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[14] J. S. Parkinson,et al. A model of excitation and adaptation in bacterial chemotaxis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[15] Bernd Kawohl,et al. Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .
[16] Hans G. Othmer,et al. Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..
[17] Charles M. Elliott,et al. The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .
[18] P. Rosenau,et al. Dynamics of dense lattices. , 1987, Physical review. B, Condensed matter.
[19] Howard A. Levine,et al. A System of Reaction Diffusion Equations Arising in the Theory of Reinforced Random Walks , 1997, SIAM J. Appl. Math..
[20] H. Othmer,et al. Models of dispersal in biological systems , 1988, Journal of mathematical biology.
[21] F. Lutscher,et al. Emerging Patterns in a Hyperbolic Model for Locally Interacting Cell Systems , 2003, J. Nonlinear Sci..
[22] Hans G. Othmer,et al. The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..
[23] H. Alt. Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .
[24] H. Othmer,et al. Oscillatory cAMP signaling in the development of Dic-tyostelium discoideum , 1998 .
[25] D. G. Aronson. The Role of Diffusion in Mathematical Population Biology: Skellam Revisited , 1985 .
[26] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[27] Dirk Horstmann,et al. Localization in lattice and continuum models of reinforced random walks , 2003, Appl. Math. Lett..
[28] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .