Adaptive delamination analysis

Summary A methodology aimed at addressing computational complexity of analyzing delamination in large structural components made of laminated composites is proposed. The classical ply-by-ply discretization of individual layers may increase the size of the problem by an order of magnitude in comparison with the laminated shell or plate element meshes. The paper features delamination indicators that pinpoint the onset and propagation of delamination fronts with striking accuracy. Once the location of delamination has been identified, the discrete solution space of the classical laminated plate/shell element is hierarchically enriched by a combination of weak and strong discontinuities to adaptively track the evolution of delamination fronts. The so-called adaptive s-method proposed herein is equivalent in terms of approximation space to the extended finite element method but offers sparser matrices and added flexibility in transitioning from weak to strong discontinuities. Numerical examples suggest that despite an overhead that comes with adaptivity, the adaptive s-method is computationally advantageous over the classical ply-by-ply discretization, especially as the problem size increases. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Jacob Fish,et al.  Multiscale finite element method for a locally nonperiodic heterogeneous medium , 1993 .

[2]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[3]  Jacob Fish,et al.  Hierarchical composite grid method for global-local analysis of laminated composite shells , 1997 .

[4]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[5]  J. Fish,et al.  Hierarchical modelling of discontinuous fields , 1992 .

[6]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[7]  C. D. Mote Global‐local finite element , 1971 .

[8]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[9]  Jacob Fish,et al.  Adaptive s-method for linear elastostatics , 1993 .

[10]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[11]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[12]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[13]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[14]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[15]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[16]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[17]  Ted Belytschko,et al.  Elements with embedded localization zones for large deformation problems , 1988 .

[18]  Giulio Alfano,et al.  Solution strategies for the delamination analysis based on a combination of local‐control arc‐length and line searches , 2003 .

[19]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[20]  Claudio Balzani,et al.  An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates , 2008 .

[21]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[22]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[23]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[24]  Jacob Fish,et al.  On the equivalence between the $$s$$s-method, the XFEM and the ply-by-ply discretization for delamination analyses of laminated composites , 2015 .

[25]  Alberto Corigliano,et al.  Geometrical and interfacial non-linearities in the analysis of delamination in composites , 1999 .

[26]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[27]  O. Allix,et al.  Interlaminar interface modelling for the prediction of delamination , 1992 .

[28]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[29]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[30]  J. Fish The s-version of the finite element method , 1992 .

[31]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[32]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[33]  Haim Waisman,et al.  Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model , 2015 .

[34]  Ahmed K. Noor,et al.  Global-local methodologies and their application to nonlinear analysis , 1986 .

[35]  Naoki Takano,et al.  Multi-scale computational method for elastic bodies with global and local heterogeneity , 2000 .

[36]  Glaucio H. Paulino,et al.  Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture , 2012 .

[37]  Ted Belytschko,et al.  The spectral overlay on finite elements for problems with high gradients , 1990 .

[38]  Jacob Fish,et al.  THE S-VERSION OF FINITE ELEMENT METHOD FOR LAMINATED COMPOSITES , 1996 .

[39]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .

[40]  Luigi Gigliotti,et al.  Multiple length/time-scale simulation of localized damage in composite structures using a Mesh Superposition Technique , 2015 .

[41]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[42]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[43]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[44]  Ted Belytschko,et al.  Embedded hinge lines for plate elements , 1989 .

[45]  Ignacio Romero,et al.  A stable X‐FEM in cohesive transition from closed to open crack , 2015 .

[46]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[47]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[48]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[49]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[50]  I. Babuska,et al.  The generalized finite element method , 2001 .

[51]  D. Borst,et al.  A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .

[52]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[53]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[54]  Qingda Yang,et al.  In Quest of Virtual Tests for Structural Composites , 2006, Science.

[55]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[56]  Peter D. Hilton,et al.  Stress intensity factors by enriched finite elements , 1978 .

[57]  Jacob Fish,et al.  Micromechanical elastic cracktip stresses in a fibrous composite , 1993 .

[58]  J. N. Reddy,et al.  Variable Kinematic Modelling of Laminated Composite Plates , 1996 .

[59]  S. Eckardt,et al.  Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .

[60]  Andreas Zilian,et al.  The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction , 2008 .

[61]  van Jaw Hans Dommelen,et al.  A three-dimensional self-adaptive cohesive zone model for interfacial delamination , 2011 .

[62]  Jacob Fish,et al.  The s‐version of the finite element method for multilayer laminates , 1992 .

[63]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .