An Analysis of Girard's Paradox

[1]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[2]  Thierry Coquand,et al.  Concepts mathématiques et informatiques formalisés dans le calcul des constructions , 1985, Logic Colloquium.

[3]  F. Dick A survey of the project Automath , 1980 .

[4]  J. Lambek From types to sets , 1980 .

[5]  Thierry Coquand,et al.  Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.

[6]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[7]  J. Barkley Rosser,et al.  The Burali-Forti paradox , 1942, Journal of Symbolic Logic.

[8]  M. Gordon HOL : A machine oriented formulation of higher order logic , 1985 .

[9]  L. Cardelli A Polymorphic λ-calculus with Type:Type , 1986 .

[10]  Butler W. Lampson,et al.  A Kernel Language for Abstract Data Types and Modules , 1984, Semantics of Data Types.

[11]  Christine Mohring,et al.  Algorithm Development in the Calculus of Constructions , 1986, Logic in Computer Science.

[12]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[13]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[14]  John C. Mitchell,et al.  Second-Order Logical Relations (Extended Abstract) , 1985, Logic of Programs.

[15]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[16]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[17]  A. W. Hofmann The Theory of Types , 1964 .

[18]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[19]  John C. Mitchell Lambda calculus models of typed programming languages , 1984 .

[20]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[21]  David B. MacQueen Using dependent types to express modular structure , 1986, POPL '86.