An Analysis of Girard's Paradox
暂无分享,去创建一个
[1] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[2] Thierry Coquand,et al. Concepts mathématiques et informatiques formalisés dans le calcul des constructions , 1985, Logic Colloquium.
[3] F. Dick. A survey of the project Automath , 1980 .
[4] J. Lambek. From types to sets , 1980 .
[5] Thierry Coquand,et al. Constructions: A Higher Order Proof System for Mechanizing Mathematics , 1985, European Conference on Computer Algebra.
[6] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[7] J. Barkley Rosser,et al. The Burali-Forti paradox , 1942, Journal of Symbolic Logic.
[8] M. Gordon. HOL : A machine oriented formulation of higher order logic , 1985 .
[9] L. Cardelli. A Polymorphic λ-calculus with Type:Type , 1986 .
[10] Butler W. Lampson,et al. A Kernel Language for Abstract Data Types and Modules , 1984, Semantics of Data Types.
[11] Christine Mohring,et al. Algorithm Development in the Calculus of Constructions , 1986, Logic in Computer Science.
[12] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[13] John C. Reynolds,et al. Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.
[14] John C. Mitchell,et al. Second-Order Logical Relations (Extended Abstract) , 1985, Logic of Programs.
[15] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[16] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[17] A. W. Hofmann. The Theory of Types , 1964 .
[18] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[19] John C. Mitchell. Lambda calculus models of typed programming languages , 1984 .
[20] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[21] David B. MacQueen. Using dependent types to express modular structure , 1986, POPL '86.