Quantized Feedback Control for Networked Control Systems Under Communication Constraints

This paper investigates the feedback stabilization problem for networked control systems (NCSs) with unbound process noise, where sensors and controllers are connected via noiseless digital channels carrying a finite number of bits per unit time. A sufficient condition for stabilization of NCSs, which relies on a variable-rate digital link used to transmit state measurements, is derived. A lower bound of data rates, above which there exists a quantization, coding and control scheme to guarantee both stabilization and a prescribed control performance of the unstable discrete-time plant, is presented. An illustrative example is given to demonstrate the effectiveness of the proposed method.

[1]  John Baillieul,et al.  Data-rate requirements for nonlinear Feedback control , 2004 .

[2]  Chuang Li,et al.  H∞ control of networked control systems with time delay and packet disordering , 2007, J. Frankl. Inst..

[3]  S. Dey,et al.  Infimum data rates for stabilising Markov jump linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[5]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[6]  Robin J. Evans,et al.  Feedback Control Under Data Rate Constraints: An Overview , 2007, Proceedings of the IEEE.

[7]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[8]  Munther A. Dahleh,et al.  Feedback Control in the Presence of Noisy Channels: “Bode-Like” Fundamental Limitations of Performance , 2008, IEEE Transactions on Automatic Control.

[9]  Tamer Basar,et al.  Communication Constraints for Decentralized Stabilizability With Time-Invariant Policies , 2007, IEEE Transactions on Automatic Control.

[10]  John Baillieul,et al.  Robust quantization for digital finite communication bandwidth (DFCB) control , 2004, IEEE Transactions on Automatic Control.

[11]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[12]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[13]  Guang-Hong Yang,et al.  H/sub /spl infin// control of networked control systems with time delay and packet disordering , 2007 .

[14]  Guang-Hong Yang,et al.  Multiple communication channels-based packet dropout compensation for networked control systems , 2008 .

[15]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[16]  Massimo Franceschetti,et al.  Data Rate Theorem for Stabilization Over Time-Varying Feedback Channels , 2009, IEEE Transactions on Automatic Control.

[17]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[18]  Munther A. Dahleh,et al.  Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.

[19]  Panos J. Antsaklis,et al.  Control and Communication Challenges in Networked Real-Time Systems , 2007, Proceedings of the IEEE.

[20]  John Baillieul,et al.  Feedback Designs for Controlling Device Arrays with Communication Channel Bandwidth Constraints , 1999 .

[21]  Charalambos D. Charalambous,et al.  Control of Continuous-Time Linear Gaussian Systems Over Additive Gaussian Wireless Fading Channels: A Separation Principle , 2008, IEEE Transactions on Automatic Control.

[22]  Seddik M. Djouadi,et al.  On robust stabilization over communication channels in the presence of unstructured uncertainty , 2006 .

[23]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..