Many-body green function of degenerate systems.
暂无分享,去创建一个
[1] T. Kuo,et al. Shell-model calculations and realistic effective interactions , 2008, 0809.2144.
[2] Tosio Kato. Perturbation theory for linear operators , 1966 .
[3] L. Cederbaum,et al. Scattering from open-shell many-body targets , 2002 .
[4] Eberhard Zeidler,et al. Quantum field theory : competitive models , 2009 .
[5] J. Hirschfelder. Formal Rayleigh–Schrödinger perturbation theory for both degenerate and non‐degenerate energy states , 1969 .
[6] M. Gell-Mann,et al. Bound States in Quantum Field Theory , 1951 .
[7] S. Sugano,et al. Multiplets of transition-metal ions in crystals , 1970 .
[8] J. J. Rehr,et al. Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.
[9] Generalized Gell-Mann–Low theorem for relativistic bound states , 2001, hep-ph/0101149.
[10] R. Lange,et al. Degenerate Mass Operator Perturbation Theory in the Hubbard Model , 1968 .
[11] A. Fetter,et al. Quantum Theory of Many-Particle Systems , 1971 .
[12] A. Layzer. PROPERTIES OF THE ONE-PARTICLE GREEN'S FUNCTION FOR NONUNIFORM MANY-FERMION SYSTEMS , 1963 .
[13] Gabriel Stoltz,et al. Adiabatic approximation, Gell-Mann and Low theorem, and degeneracies: A pedagogical example , 2008, 0807.4218.
[14] A. Messiah. Quantum Mechanics , 1961 .
[15] Elliott H. Lieb,et al. Density Functionals for Coulomb Systems , 1983 .
[16] F. Aryasetiawan,et al. The GW method , 1997, cond-mat/9712013.
[17] I. Lindgren,et al. The covariant-evolution-operator method in bound-state QED , 2004 .
[18] L. Reining,et al. Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .
[19] J. Rammer,et al. Quantum Field Theory of Non-equilibrium States , 2007 .
[20] A. Hall. Non-equilibrium Green functions: generalized Wick's theorem and diagrammatic perturbation with initial correlations , 1975 .
[21] G. Rasche,et al. Adiabatic theorem and Gell-Mann - Low formula , 1988 .
[22] 田辺 行人,et al. Multiplets of transition-metal ions in crystals , 1970 .
[23] S. Y. Lee,et al. A folded-diagram expansion of the model-space effective hamiltonian , 1971 .
[24] A. Tsaune,et al. General scheme of splittings of degenerate eigensubspaces and eigenelements of self-adjoint operators in high orders of perturbation theory , 2000 .
[25] R. Lefebvre,et al. Correlation effects in atoms and molecules , 1969 .
[26] T. Kuo,et al. Folded-diagram theory of the effective interaction in nuclei, atoms and molecules , 1990 .