Many-body green function of degenerate systems.

A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H(0) leading to eigenstates of H(0) + V for degenerate systems. These initial states are eigenstates of P(0)VP(0), where P(0) is the projection onto a degenerate eigenspace of H(0). This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

[1]  T. Kuo,et al.  Shell-model calculations and realistic effective interactions , 2008, 0809.2144.

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  L. Cederbaum,et al.  Scattering from open-shell many-body targets , 2002 .

[4]  Eberhard Zeidler,et al.  Quantum field theory : competitive models , 2009 .

[5]  J. Hirschfelder Formal Rayleigh–Schrödinger perturbation theory for both degenerate and non‐degenerate energy states , 1969 .

[6]  M. Gell-Mann,et al.  Bound States in Quantum Field Theory , 1951 .

[7]  S. Sugano,et al.  Multiplets of transition-metal ions in crystals , 1970 .

[8]  J. J. Rehr,et al.  Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.

[9]  Generalized Gell-Mann–Low theorem for relativistic bound states , 2001, hep-ph/0101149.

[10]  R. Lange,et al.  Degenerate Mass Operator Perturbation Theory in the Hubbard Model , 1968 .

[11]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[12]  A. Layzer PROPERTIES OF THE ONE-PARTICLE GREEN'S FUNCTION FOR NONUNIFORM MANY-FERMION SYSTEMS , 1963 .

[13]  Gabriel Stoltz,et al.  Adiabatic approximation, Gell-Mann and Low theorem, and degeneracies: A pedagogical example , 2008, 0807.4218.

[14]  A. Messiah Quantum Mechanics , 1961 .

[15]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[16]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[17]  I. Lindgren,et al.  The covariant-evolution-operator method in bound-state QED , 2004 .

[18]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[19]  J. Rammer,et al.  Quantum Field Theory of Non-equilibrium States , 2007 .

[20]  A. Hall Non-equilibrium Green functions: generalized Wick's theorem and diagrammatic perturbation with initial correlations , 1975 .

[21]  G. Rasche,et al.  Adiabatic theorem and Gell-Mann - Low formula , 1988 .

[22]  田辺 行人,et al.  Multiplets of transition-metal ions in crystals , 1970 .

[23]  S. Y. Lee,et al.  A folded-diagram expansion of the model-space effective hamiltonian , 1971 .

[24]  A. Tsaune,et al.  General scheme of splittings of degenerate eigensubspaces and eigenelements of self-adjoint operators in high orders of perturbation theory , 2000 .

[25]  R. Lefebvre,et al.  Correlation effects in atoms and molecules , 1969 .

[26]  T. Kuo,et al.  Folded-diagram theory of the effective interaction in nuclei, atoms and molecules , 1990 .