Sub-block motion derivation for merge mode in HEVC

The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. In this paper, two additional merge candidates, advanced temporal motion vector predictor and spatial-temporal motion vector predictor, are developed to improve motion information prediction scheme under the HEVC structure. The proposed method allows each Prediction Unit (PU) to fetch multiple sets of motion information from multiple blocks smaller than the current PU. By splitting a large PU into sub-PUs and filling motion information for all the sub-PUs of the large PU, signaling cost of motion information could be reduced. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. Simulation results show that 2.4% performance improvement over HEVC can be achieved.

[1]  Gary J. Sullivan,et al.  Overview of the High Efficiency Video Coding (HEVC) Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  F. Bossen,et al.  Common test conditions and software reference configurations , 2010 .

[3]  Jianle Chen,et al.  Overview of SHVC: Scalable Extensions of the High Efficiency Video Coding Standard , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[5]  Detlev Marpe,et al.  Block Merging for Quadtree-Based Partitioning in HEVC , 2012, IEEE Transactions on Circuits and Systems for Video Technology.