The hierarchical structure and properties of multifunctional carbon nanotube fibre composites

Abstract The axial mechanical, electrical and thermal properties of carbon nanotubes (CNTs) can be exploited macroscopically by assembling them parallel to each other into a fibre during their synthesis by chemical vapour deposition. Multifunctional composites with high volume fraction of CNT fibres are then made by direct polymer infiltration of an array of aligned fibres. The fibres have a very high surface area, causing the polymer to infiltrate them and resulting in a hierarchical composite structure. The electrical and thermal conductivities of CNT/epoxy composites are shown to be superior to those of equivalent specimens with T300 carbon fibre (CF) which is widely used in industry. From measurements of longitudinal coefficient of thermal expansion (CTE) of the composites we show that the CTE of CNT fibres is approximately −1.6 × 10 −6  K −1 , similar to in-plane graphite. The combination of electrical, thermal and mechanical properties of CNT fibre composites demonstrates their potential for multifunctionality.

[1]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[2]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[3]  J. J. Vilatela,et al.  Yarn‐Like Carbon Nanotube Fibers , 2010, Advanced materials.

[4]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[5]  H. Garmestani,et al.  Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing , 2003 .

[6]  Xiaosu Yi,et al.  High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. , 2009, Nano letters.

[7]  C. Riekel,et al.  Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence , 2009 .

[8]  N. Tai,et al.  Investigations on the thermal conductivity of composites reinforced with carbon nanotubes , 2008 .

[9]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[10]  C. Ania,et al.  Extension of preparation methods employed with ceramic materials to carbon honeycomb monoliths , 2004 .

[11]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[12]  Mei Zhang,et al.  Thermal transport in MWCNT sheets and yarns , 2007 .

[13]  Xin Wang,et al.  A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes , 2010 .

[14]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[15]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[16]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[17]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[18]  D. Tománek,et al.  Thermal contraction of carbon fullerenes and nanotubes. , 2004, Physical review letters.

[19]  S. Fang,et al.  Structure and process-dependent properties of solid-state spun carbon nanotube yarns , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  R. Young,et al.  Structure of and stress transfer in fibres spun from carbon nanotubes produced by chemical vapour deposition , 2011 .

[21]  T. Chou,et al.  An assessment of the science and technology of carbon nanotube-based fibers and composites , 2010 .

[22]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[23]  V. Castaño,et al.  Carbon Nanotubes Composites: Processing, Grafting and Mechanical and Thermal Properties , 2010 .

[24]  I. Kinloch,et al.  High Performance Fibres from ‘Dog Bone’ Carbon Nanotubes , 2007 .

[25]  Hui‐Ming Cheng,et al.  Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum , 2004 .

[26]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[27]  M L Brugnatelli,et al.  XXII. Chemico-Galvanic observations communicated to the National Institute of Italy , 1806 .

[28]  A. Windle,et al.  Properties of composites of carbon nanotube fibres , 2009 .

[29]  Thermal expansion coefficients of graphite crystals , 1972 .

[30]  Benedict,et al.  Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets. , 1995, Physical review. B, Condensed matter.

[31]  Jinzhu Li,et al.  Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy , 2010 .

[32]  R. Smalley,et al.  Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport , 2004 .

[33]  Qingwen Li,et al.  Enhanced carbon nanotube fibers by polyimide , 2010 .

[34]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[35]  I. Kinloch,et al.  Prospects for nanotube and nanofibre composites , 2004 .

[36]  W. H. Carothers,et al.  STUDIES OF POLYMERIZATION AND RING FORMATION. XV. ARTIFICIAL FIBERS FROM SYNTHETIC LINEAR CONDENSATION SUPERPOLYMERS , 1932 .

[37]  Alan H. Windle,et al.  The parameter space for the direct spinning of fibres and films of carbon nanotubes , 2007 .

[38]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[39]  Peter Morgan,et al.  Carbon Fibers and Their Composites , 2005 .