Structural Dynamic Analysis with Generalized Damping Models Identification

[1]  J. Kellett London , 1914, The Hospital.

[2]  Daniel J. Segalman,et al.  Calculation of damping matrices for linearly viscoelastic structures , 1987 .

[3]  Olga Taussky,et al.  The role of symmetric matrices in the study of general matrices , 1972 .

[4]  Vikas Arora,et al.  Damped model updating using complex updating parameters , 2009 .

[5]  V. Potapov Stability via nonlocal continuum mechanics , 2013 .

[6]  Fernando Cortés,et al.  An approximate numerical method for the complex eigenproblem in systems characterised by a structural damping matrix , 2006 .

[7]  Nuno M. M. Maia,et al.  On a General Model for Damping , 1998 .

[8]  Sondipon Adhikari,et al.  On the quantification of damping model uncertainty , 2007 .

[9]  Eric E. Ungar,et al.  Damping by Viscoelastic Layers , 2000 .

[10]  Daniel J. Inman,et al.  On the Realisation of GHM Models in Viscoelasticity , 1997 .

[11]  M. A. Trindade Reduced-Order Finite Element Models of Viscoelastically Damped Beams Through Internal Variables Projection , 2006 .

[12]  Fernando Cortés,et al.  A direct integration formulation for exponentially damped structural systems , 2009 .

[13]  Daniel J. Inman,et al.  A symmetric inverse vibration problem for nonproportional underdamped systems , 1997 .

[14]  Chun-Sheng Chen,et al.  Vibration analysis of a beam with partially distributed internal viscous damping , 2009 .

[15]  Uwe Prells,et al.  A MEASURE OF NON-PROPORTIONAL DAMPING , 2000 .

[16]  Arthur W. Lees,et al.  Time domain analysis of a viscoelastic rotor using internal variable models , 2010 .

[17]  Andrew W. Smyth,et al.  On-Line Identification of Hysteretic Systems , 1998 .

[18]  Zdzisław Pawlak,et al.  The continuation method for the eigenvalue problem of structures with viscoelastic dampers , 2013 .

[19]  A. Muravyov ANALYTICAL SOLUTIONS IN THE TIME DOMAIN FOR VIBRATION PROBLEMS OF DISCRETE VISCOELASTIC SYSTEMS , 1997 .

[20]  R. Moreira,et al.  Viscoelastic Damping Technologies-Part I: Modeling and Finite Element Implementation ⋆ , 2010 .

[21]  Nicola Amati,et al.  Hysteretic Damping in Rotordynamics: An Equivalent Formulation , 2010 .

[22]  Sondipon Adhikari,et al.  Lancaster’s Method of Damping Identification Revisited , 2002 .

[23]  Michael W. Sracic,et al.  Two Algorithms for Mass Normalizing Mode Shapes From Impact Excited Continuous-Scan Laser Doppler Vibrometry , 2012 .

[24]  Su-huan Chen,et al.  Perturbation method for computing eigenvalue bounds in structural vibration systems with interval parameters , 1994 .

[25]  Li Li,et al.  Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues , 2013 .

[26]  Piotr Omenzetter,et al.  Sensitivity Analysis of the Eigenvalue Problem for General Dynamic Systems with Application to Bridge Deck Flutter , 2012 .

[27]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[28]  Seamus D. Garvey,et al.  THE RELATIONSHIP BETWEEN THE REAL AND IMAGINARY PARTS OF COMPLEX MODES , 1998 .

[29]  Jean-Guy Béliveau,et al.  Identification of Viscous Damping in Structures From Modal Information , 1976 .

[30]  Raymond H. Plaut,et al.  Derivatives of eigenvalues and eigenvectors in non-self-adjoint systems. , 1973 .

[31]  Y. Halevi,et al.  Model updating of the complex modeshapes and the damping matrix , 2000 .

[32]  Thomas K. Caughey,et al.  Complex Modes and Solvability of Nonclassical Linear Systems , 1993 .

[33]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[34]  Sondipon Adhikari,et al.  Estimation of Modal Dampings for Unmeasured Modes , 2012 .

[35]  Daniel T. Kawano,et al.  The decoupling of defective linear dynamical systems in free motion , 2011 .

[36]  J. Béliveau Eigenrelations in Structural Dynamics , 1977 .

[37]  F. Cortés,et al.  Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments , 2006 .

[38]  S. Adhikari On Symmetrizable Systems of Second Kind , 2000 .

[39]  Maurice A. Biot,et al.  Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity , 1955 .

[40]  Thomas K. Caughey,et al.  Analysis of Linear Nonconservative Vibrations , 1995 .

[41]  Matthias Morzfeld,et al.  The decoupling of damped linear systems in free or forced vibration , 2010 .

[42]  Sondipon Adhikari,et al.  A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with viscoelastic inner layer , 2011 .

[43]  E. M. ElBeheiry,et al.  On eigenproblem solution of damped vibrations associated with gyroscopic moments , 2009 .

[44]  Wolfhard Kliem Symmetrizable Systems in Mechanics and Control Theory , 1992 .

[45]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART I: GENERAL TRANSFORMATIONS , 2002 .

[46]  A. Skarolek Exponential Damping as an Approach to Internal Hysteretic Damping of Rotor Systems: FEM Model of Timoshenko Rotating Beam with Maxwell-Weichert Damping Model , 2012 .

[47]  D. Z. Luo A graphic explanation of undamped and damped mode shapes and its application , 1989 .

[48]  D. W. Nicholson,et al.  Stable Response of Non-Classically Damped Mechanical Systems - II , 1996 .

[49]  Matthew S. Allen,et al.  Method for identifying models of nonlinear systems using linear time periodic approximations , 2011 .

[50]  Sondipon Adhikari,et al.  Tracking noisy limit cycle oscillation with nonlinear filters , 2010 .

[51]  Faruk Firat Calim,et al.  Static and free vibration analysis of straight and circular beams on elastic foundation , 2011 .

[52]  R. Singh,et al.  Examination of the validity of proportional damping approximations with two further numerical indices , 1986 .

[53]  H. S. Zibdeh,et al.  Response of fractionally damped beams with general boundary conditions subjected to moving loads , 2012 .

[54]  Mario Lázaro,et al.  Computation of eigenvalues in proportionally damped viscoelastic structures based on the fixed-point iteration , 2012, Appl. Math. Comput..

[55]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[56]  Subrata Chakraborty,et al.  Element Level Identification of a Viscously Damped System , 2010 .

[57]  H. D. Nelson,et al.  Eigenrelations for General Second-Order Systems , 1979 .

[58]  R. H. Scanlan,et al.  Linear damping models and causality in vibrations , 1970 .

[59]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[60]  Peter J. Torvik,et al.  FRACTIONAL CALCULUS - A DIFFERENT APPROACH TO THE FINITE ELEMENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES. , 1981 .

[61]  Huiqing Xie,et al.  Calculation of derivatives of multiple eigenpairs of unsymmetrical quadratic eigenvalue problems , 2008, Int. J. Comput. Math..

[62]  Zhaojun Bai,et al.  SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[63]  W. G. Price,et al.  AN INVESTIGATION INTO THE LINEAR THEORY OF SHIP RESPONSE TO WAVES , 1979 .

[64]  황재혁 On the Approximate Solution of Nonclassically Damped Linear Systems , 1991 .

[65]  S. Adhiakri Rates of Change of Eigenvalues and Eigenvectors in Damped Dynamic System , 1999 .

[66]  Sondipon Adhikari,et al.  Analysis of asymmetric nonviscously damped linear dynamic systems , 2003 .

[67]  Fernando Cortés,et al.  Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models , 2007 .

[68]  D. Crighton Acoustics of a stiff locally reacting structure , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  Mario Di Paola,et al.  Non-local stiffness and damping models for shear-deformable beams , 2013 .

[70]  G. J. Lyons,et al.  Material Damping of Free Hanging Pipes: Theoretical and Experimental Studies , 1994 .

[71]  Wanping Zheng,et al.  Quantification of non-proportionality of damping in discrete vibratory systems , 2000 .

[72]  Su-huan Chen,et al.  Eigensolution reanalysis of modified structures using epsilon‐algorithm , 2006 .

[73]  S. M. Shahruz,et al.  Approximate Decoupling of the Equations of Motion of Linear Underdamped Systems , 1988 .

[74]  George C. Lee,et al.  An Index of Damping Non-Proportionality for Discrete Vibrating Systems , 1994 .

[75]  Faruk Firat Calim,et al.  Dynamic analysis of beams on viscoelastic foundation , 2009 .

[76]  C. Ventura,et al.  MODAL ANALYSIS OF NON-CLASSICALLY DAMPED LINEAR SYSTEMS , 1986 .

[77]  周建平,et al.  Strain analysis of nonlocal viscoelastic Kelvin bar in tension , 2008 .

[78]  Sondipon Adhikari,et al.  Derivative of Eigensolutions of Nonviscously Damped Linear Systems , 2002 .

[79]  L. Peterson,et al.  Extraction of Normal Modes and Full Modal Damping from Complex Modal Parameters , 1997 .

[80]  M. Dalenbring,et al.  DAMPING FUNCTION ESTIMATION BASED ON MEASURED VIBRATION FREQUENCY RESPONSES AND FINITE-ELEMENT DISPLACEMENT MODES , 1999 .

[81]  D. Inman,et al.  Response Bounds for Linear Underdamped Systems , 1987 .

[82]  C. Sultan Decoupling approximation design using the peak to peak gain , 2013 .

[83]  S. Shahruz,et al.  Approximate Solutions of Non-Classically Damped Linear Systems in Normalized and Physical Co-Ordinates , 1997 .

[84]  A. Srikantha Phani,et al.  On the necessary and sufficient conditions for the existence of classical normal modes in damped linear dynamic systems , 2003 .

[85]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[86]  Su-huan Chen,et al.  A method for modal reanalysis of topological modifications of structures , 2006 .

[87]  Firdaus E. Udwadia,et al.  Nonclassically Damped Dynamic Systems: An Iterative Approach , 1990 .

[88]  Hans Zassenhaus,et al.  On the similarity transformation between a matirx and its transpose. , 1959 .

[89]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[90]  Xiang Jinwu,et al.  Novel Modal Method for Efficient Calculation of Complex Eigenvector Derivatives , 2007 .

[91]  Sondipon Adhikari,et al.  A Galerkin method for distributed systems with non-local damping , 2006 .

[92]  Li Li,et al.  Eigensensitivity Analysis for Asymmetric Nonviscous Systems , 2013 .

[93]  John T. Cunningham,et al.  New Jersey , 1896, The Journal of Comparative Medicine and Veterinary Archives.

[94]  Daniel J. Inman,et al.  Reduced-Order Models of Structures with Viscoelastic Components , 1999 .

[95]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[96]  Matthias Morzfeld,et al.  The Transformation of Second-Order Linear Systems into Independent Equations , 2011, SIAM J. Appl. Math..

[97]  Bingen Yang,et al.  Modal Expansion of Structural Systems with Time Delays , 1998 .

[98]  Vikas Arora,et al.  Finite element model updating with damping identification , 2009 .

[99]  V. D. Naylor,et al.  Some fallacies in modern damping theory , 1970 .

[100]  C. Vasques,et al.  Viscoelastic Damping Technologies: Finite Element Modeling and Application to Circular Saw Blades , 2011 .

[101]  Sondipon Adhikari,et al.  Experimental Identification of Generalized Proportional Viscous Damping Matrix , 2009 .

[102]  A. Sestieri,et al.  Analysis Of Errors And Approximations In The Use Of Modal Co-Ordinates , 1994 .

[103]  Peter Lancaster Expressions for Damping Matrices in Linear Vibration Problems , 1961 .

[104]  Kluwer academic publishers acquires ESCOM science publishers , 1997 .

[105]  S. H. Crandall The role of damping in vibration theory , 1970 .

[106]  Li Li,et al.  Numerical methods for evaluating the sensitivity of element modal strain energy , 2013 .

[107]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[108]  Fernando Cortés,et al.  Viscoelastic materials characterisation using the seismic response , 2007 .

[109]  Shuenn-Yih Chang Nonlinear performance of classical damping , 2013, Earthquake Engineering and Engineering Vibration.

[110]  J. Williamson Note on a principal axis transformation for non-hermitian matrices , 1939 .

[111]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[112]  Etienne Balmes,et al.  Structural Dynamics Toolbox et OpenFEM , 2009 .

[113]  Chein-Shan Liu A Lie-Group Shooting Method Estimating Nonlinear Restoring Forces in Mechanical Systems , 2008 .

[114]  Ming-Shaung Ju,et al.  EXTRACTION OF NORMAL MODES FOR HIGHLY COUPLED INCOMPLETE SYSTEMS WITH GENERAL DAMPING , 1996 .

[115]  T. K. Hasselman,et al.  Method for Constructing a Full Modal Damping Matrix from Experimental Measurements , 1972 .

[116]  Sondipon Adhikari,et al.  Identification of damping: Part 4, error, analysis , 2002 .

[117]  G. Failla,et al.  A mechanically based approach to non-local beam theories , 2011 .

[118]  Seamus D. Garvey,et al.  Eigenvalue and eigenvector derivatives of second-order systems using structure-preserving equivalences , 2009 .

[119]  Sondipon Adhikari,et al.  Dynamics of Nonviscously Damped Linear Systems , 2002 .

[120]  Gianmarco De Felice,et al.  Hysteretic Systems with Internal Variables , 2001 .

[121]  In-Won Lee,et al.  Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system , 2004 .

[122]  David J. Wagg,et al.  On the interaction of exponential non-viscous damping with symmetric nonlinearities , 2008 .

[123]  Etienne Balmès,et al.  Frequency Domain Identification of Structural Dynamics Using the Pole / Residue Parametrization , 1997 .

[124]  Sondipon Adhikari,et al.  Iterative Methods for Eigenvalues of Viscoelastic Systems , 2011 .

[125]  S. Shahruz Comments on “an index of damping non-proportionality for discrete vibrating systems” , 1995 .

[126]  Li Li,et al.  Improved approximate methods for calculating frequency response function matrix and response of MDOF systems with viscoelastic hereditary terms , 2013 .

[127]  Mohamed Ichchou,et al.  Predicting the broadband vibroacoustic response of systems subject to aeroacoustic loads by a Krylov subspace reduction , 2013 .

[128]  Chein-Shan Liu,et al.  A Lie-Group Shooting Method for Simultaneously Estimating the Time-Dependent Damping and Stiffness Coefficients , 2008 .

[129]  Seamus D. Garvey,et al.  Deflating quadratic matrix polynomials with structure preserving transformations , 2011 .

[130]  P. Ruge,et al.  Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals , 2002 .

[131]  John E. Mottenhead Theory for the Estimation of Structural Vibration Parameters from Incomplete Data , 1990 .

[132]  Y. Matsuzaki,et al.  A Study on the Material Damping of Thin Angle-Ply Laminated Plates , 1994 .

[133]  Zhiping Qiu,et al.  Simplified calculation of eigenvector derivatives with repeated eigenvalues , 1996 .

[134]  Daniel J. Inman,et al.  Classical Normal Modes in Asymmetric Nonconservative Dynamic Systems , 1984 .

[135]  S. V. Modak,et al.  Normal response function method for mass and stiffness matrix updating using complex FRFs , 2012 .

[136]  S. W. E. Earles,et al.  Theoretical Estimation of the Frictional Energy Dissipation in a Simple Lap Joint , 1966 .

[137]  Michael I. Friswell,et al.  Calculation of second and higher order eigenvector derivatives , 1995 .

[138]  Usik Lee,et al.  A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics , 1996 .

[139]  A. De Luca,et al.  State Space Formulation for Linear Viscoelastic Dynamic Systems with Memory , 2003 .

[140]  Sondipon Adhikari,et al.  Dynamic Response Characteristics of a Nonviscously Damped Oscillator , 2008 .

[141]  Vikas Arora,et al.  Further experience with model updating incorporating damping matrices , 2010 .

[142]  M Cavacece,et al.  Identification of modal damping ratios of four‐flue chimney of a thermoelectrical plant using pseudo‐inverse matrix method , 2009 .

[143]  A. Sarkar,et al.  Nonlinear filters for chaotic oscillatory systems , 2009 .

[144]  Wei-Ren Chen,et al.  Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin–Voigt damping , 2011 .

[145]  Jorn S. Hansen,et al.  A Time Domain Substructure Synthesis Method for Viscoelastic Structures , 1995 .

[146]  R. Eatock Taylor,et al.  A note on the dynamic analysis of non‐proportionally damped systems , 1979 .

[147]  J. S. Kim,et al.  Characteristics of Modal Coupling in Nonclassically Damped Systems Under Harmonic Excitation , 1994 .

[148]  Sondipon Adhikari,et al.  Vibration analysis of beams with non‐local foundations using the finite element method , 2007 .

[149]  C. S. Rudisill,et al.  Derivatives of Eigenvalues and Eigenvectors for a General Matrix , 1974 .

[150]  Rongming Lin,et al.  Model updating of damped structures using FRF data , 2006 .

[151]  T. Yiu,et al.  Finite element analysis of structures with classical viscoelastic materials , 1993 .

[152]  Sondipon Adhikari,et al.  IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING , 2001 .

[153]  Goizalde Ajuria,et al.  Proportional damping approximation for structures with added viscoelastic dampers , 2006 .

[154]  H. Leipholz,et al.  Divergence instability of multiple-parameter circulatory systems , 1973 .

[155]  R. Bishop,et al.  A Note on Hysteretic Damping of Transient Motions , 1986 .

[156]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[157]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[158]  Sondipon Adhikari,et al.  Calculation of eigensolution derivatives for nonviscously damped systems using nelson's method , 2006 .

[159]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[160]  Mnaouar Chouchane,et al.  A direct algebraic method for eigensolution sensitivity computation of damped asymmetric systems , 2006 .

[161]  A method of symmetrization of asymmetric dynamical systems , 2015 .

[162]  Stephen F. Felszeghy,et al.  On Uncoupling and Solving the Equations of Motion of Vibrating Linear Discrete Systems , 1993 .

[163]  Vikas Arora,et al.  Comparative study of damped FE model updating methods , 2009 .

[164]  Mnaouar Chouchane,et al.  Second-order eigensensitivity analysis of asymmetric damped systems using Nelson's method , 2007 .

[165]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[166]  Sondipon Adhikari,et al.  Direct time-domain integration method for exponentially damped linear systems , 2004 .

[167]  Miha Boltežar,et al.  On the modeling of vibration transmission over a spatially curved cable with casing , 2009 .

[168]  Sondipon Adhikari,et al.  Eigenrelations for Nonviscously Damped Systems , 2001 .

[169]  Forced vibration responses of a viscoelastic structure , 1998 .

[170]  Fai Ma,et al.  Decoupling approximation of nonclassically damped structures , 1992 .

[171]  Subhash Garg,et al.  Derivatives of Eigensolutions for a General Matrix , 1973 .

[172]  Bogdan I. Epureanu,et al.  Measurement point selection and modal damping identification for bladed disks , 2012 .

[173]  In-Won Lee,et al.  Sensitivity analysis of non-conservative eigensystems , 2004 .

[174]  Sondipon Adhikari,et al.  Qualitative dynamic characteristics of a non-viscously damped oscillator , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[175]  Uwe Prells,et al.  General isospectral flows for linear dynamic systems , 2004 .

[176]  Rongming Lin,et al.  On the relationship between viscous and hysteretic damping models and the importance of correct interpretation for system identification , 2009 .

[177]  M. A. Trindade,et al.  Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping , 2000 .

[178]  C F Beards,et al.  STRUCTURAL VIBRATION: ANALYSIS AND DAMPING , 1996 .

[179]  C. W. Bert,et al.  Material damping - An introductory review of mathematical models, measures and experimental techniques. , 1973 .

[180]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[181]  S. R. Ibrahim Existence and Normalization of Complex Modes for Post Experimental Use in Modal Analysis , 1999 .

[182]  Giuseppe Muscolino,et al.  A numerical method for the time‐domain dynamic analysis of buildings equipped with viscoelastic dampers , 2011 .

[183]  J. Brandon Second-Order Design Sensitivities to Assess the Applicability of Sensitivity Analysis , 1991 .

[184]  S. Garvey,et al.  On the class of strictly isospectral systems , 2009 .

[185]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[186]  Leonard Meirovitch,et al.  A perturbation technique for gyroscopic systems with small internal and external damping , 1984 .

[187]  Lothar Gaul,et al.  The influence of damping on waves and vibrations , 1999 .

[188]  Brian R. Mace,et al.  Arbitrary active constrained layer damping treatments on beams: Finite element modelling and experimental validation , 2006 .

[189]  T. Randolph,et al.  Eigenvalue and Eigenvector Determination for Damped Gyroscopic Systems , 1997 .

[190]  Li Li,et al.  Computation of Eigensolution Derivatives for Nonviscously Damped Systems Using the Algebraic Method , 2012 .

[191]  E. E. Ungar,et al.  Loss Factors of Viscoelastic Systems in Terms of Energy Concepts , 1962 .

[192]  L. Mentrasti Exact deflation in the complex modal analysis of low-rank non-classically damped structures , 2012 .

[193]  John E. Mottershead,et al.  An assessment of damping identification methods , 2009 .

[194]  Patrick Muller,et al.  Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? , 2005 .

[195]  Massimiliano Zingales,et al.  A non-local two-dimensional foundation model , 2013 .

[196]  M. Boltezar,et al.  Damped lateral vibrations of straight and curved cables with no axial pre-load , 2007 .

[197]  Chein-Shan Liu,et al.  Identifying time-dependent damping and stiffness functions by a simple and yet accurate method , 2008 .

[198]  The relationship between the resonant and natural frequency for non-viscous systems , 2003 .

[199]  S. González-López,et al.  Vibrations in Euler-Bernoulli beams treated with non-local damping patches , 2012 .

[200]  Zach Liang,et al.  Structural Damping: Applications in Seismic Response Modification , 2011 .

[201]  F. Cortés,et al.  Influence of Nonviscous Modes on Transient Response of Lumped Parameter Systems With Exponential Damping , 2011 .

[202]  J. S. Kim,et al.  On modal coupling in non-classically damped linear systems , 1992 .

[203]  A. Karimi,et al.  Master‟s thesis , 2011 .

[204]  Ming-Shaung Ju,et al.  Estimation of Mass, Stiffness and Damping Matrices from Frequency Response Functions , 1996 .

[205]  Kui-Fu Chen,et al.  On the impulse response precursor of an ideal linear hysteretic damper , 2008 .

[206]  A. Sestieri,et al.  Real modes computation from identified modal parameters with estimate of generalized damping , 1991 .

[207]  M. Friswell,et al.  Finite–element model updating using experimental test data: parametrization and regularization , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[208]  Bingen Yang,et al.  Exact Receptances of Nonproportionally Damped Dynamic Systems , 1993 .

[209]  Stanley G. Hutton,et al.  Free Vibration Response Characteristics of a Simple Elasto-Hereditary System , 1998 .

[210]  Daniel J. Inman,et al.  Survey of modern methods for modeling frequency dependent damping in finite element models , 1993 .

[211]  M. Morzfeld,et al.  Diagonal dominance of damping and the decoupling approximation in linear vibratory systems , 2009 .

[212]  D. Nicholson Response Bounds for Nonclassically Damped Mechanical Systems Under Transient Loads , 1987 .

[213]  Sondipon Adhikari,et al.  Calculation of derivative of complex modes using classical normal modes , 2000 .

[214]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[215]  Sondipon Adhikari,et al.  Closure to “Modal Analysis of Linear Asymmetric Nonconservative Systems” by Sondipon Adhikari , 2000 .

[216]  Atul Bhaskar,et al.  Mode Shapes during Asynchronous Motion and Non-Proportionality Indices , 1999 .

[217]  Daniel J. Inman,et al.  Model reduction of viscoelastic finite element models , 1999 .

[218]  W. Thomson,et al.  A numerical study of damping , 1974 .

[219]  I. Fawzy Orthogonality of generally normalized eigenvectors and eigenrows , 1977 .

[220]  Ray W. Clough,et al.  Earthquake response analysis considering non‐proportional damping , 1976 .

[221]  Edward L. Wilson,et al.  Simple numerical algorithms for the mode superposition analysis of linear structural systems with non-proportional damping , 1989 .

[222]  G. T. Zheng,et al.  The Biot Model and Its Application in Viscoelastic Composite Structures , 2007 .

[223]  Joseba Mendiguren,et al.  A generalised fractional derivative model to represent elastoplastic behaviour of metals , 2012 .

[224]  Erin Santini-Bell,et al.  A Two‐Step Model Updating Algorithm for Parameter Identification of Linear Elastic Damped Structures , 2013, Comput. Aided Civ. Infrastructure Eng..

[225]  C. F. Beards,et al.  The damping of structural vibration by rotational slip in joints , 1977 .

[226]  S. R. Ibrahim Dynamic Modeling of Structures from Measured Complex Modes , 1982 .

[227]  S. Adhikari,et al.  Identification of damping: Part 1, viscous damping , 2001 .

[228]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[229]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[230]  Philip D. Cha,et al.  Eigenvalue Sensitivities of a Linear Structure Carrying Lumped Attachments , 2011 .

[231]  Bogdan I. Epureanu,et al.  Structural damping identification for mistuned bladed disks and blisks , 2012 .

[232]  J. L. Pérez-Aparicio,et al.  A viscous approach based on oscillatory eigensolutions for viscoelastically damped vibrating systems , 2013 .

[233]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[234]  S. S. Law,et al.  Structural damping identification based on an iterative regularization method , 2011 .

[235]  J. Woodhouse,et al.  On measuring the elastic and damping constants of orthotropic sheet materials , 1988 .

[236]  Daniel J. Inman,et al.  An Iterative Approach to Viscous Damping Matrix Identification , 1997 .

[237]  Alberto Carpinteri,et al.  Dynamic response of damped von Koch antennas , 2011 .

[238]  Roberto Frias,et al.  Viscoelastic Damping Technologies-Part II: Experimental Identification Procedure and Validation , 2010 .

[239]  Douglas E. Smith,et al.  Generalized Approach for Incorporating Normalization Conditions in Design Sensitivity Analysis of Eigenvectors , 2006 .

[240]  R. Haftka,et al.  Sensitivity Analysis of Discrete Structural Systems , 1986 .

[241]  Matthias Morzfeld,et al.  The decoupling of damped linear systems in oscillatory free vibration , 2009 .

[242]  José Manuel Abete,et al.  Dynamics of an exponentially damped solid rod: Analytic solution and finite element formulations , 2012 .

[243]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[244]  S. Shahruz,et al.  On Symmetrizability of Asymmetric Non-Conservative Systems , 1989 .

[245]  G. Ren,et al.  A quasi-decoupling approach for nonclassical linear systems in state space , 1997 .

[246]  Sondipon Adhikari,et al.  Symmetric State-Space Method for a Class of Nonviscously Damped Systems , 2003 .

[247]  Hongzhao Liu,et al.  Identification for Sucker-Rod Pumping System’s Damping Coefficients Based on Chain Code Method of Pattern Recognition , 2007 .

[248]  S. Adhikari,et al.  A General Derivation of Dynamic Response of Viscoelastic Structures , 2010 .

[249]  Mnaouar Chouchane,et al.  Eigensensitivity computation of asymmetric damped systems using an algebraic approach , 2007 .

[250]  Don Cronin,et al.  Eigenvalue and eigenvector determination for nonclassically damped dynamic systems , 1990 .

[251]  Daniel J. Inman,et al.  Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping , 2013 .

[252]  In-Won Lee,et al.  NATURAL FREQUENCY AND MODE SHAPE SENSITIVITIES OF DAMPED SYSTEMS: PART II, MULTIPLE NATURAL FREQUENCIES , 1999 .

[253]  Domingos A. Rade,et al.  An efficient modeling methodology of structural systems containing viscoelastic dampers based on frequency response function substructuring , 2009 .

[254]  On the orthogonality of natural modes of vibration , 2004 .

[255]  L. Suárez,et al.  Dynamic Synthesis of Nonclassically Damped Substructures , 1989 .

[256]  Li Li,et al.  A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues , 2012 .

[257]  M. Friswell,et al.  Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams , 2013 .

[258]  Vikas Arora,et al.  Damped FE model updating using complex updating parameters: Its use for dynamic design , 2009 .

[259]  Pierre Argoul,et al.  Modal identification of linear non-proportionally damped systems by wavelet transform , 2007 .

[260]  S. M. Shahruz,et al.  Approximate decoupling of the equations of motion of damped linear systems , 1990 .

[261]  S. R. Ibrahim Computation of Normal Modes from Identified Complex Modes , 1983 .

[262]  Uǧur Dalli,et al.  Longitudinally vibrating elastic rods with locally and non-locally reacting viscous dampers , 2005 .

[263]  C. S. Manohar,et al.  DYNAMIC ANALYSIS OF FRAMED STRUCTURES WITH STATISTICAL UNCERTAINTIES , 1999 .

[264]  G. B. Warburton,et al.  Errors in response calculations for non‐classically damped structures , 1977 .

[265]  Yung-Wei Chen,et al.  Simultaneously Estimating the Time-Dependent Damping and Stiffness Coefficients with the Aid of Vibrational Data , 2008 .

[266]  Sondipon Adhikari,et al.  Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams , 2013 .

[267]  Gérard Cornuéjols,et al.  A Decomposition Theorem for Balanced Matrices , 1990, IPCO.

[268]  J. Fabunmi,et al.  Damping Matrix Identification Using the Spectral Basis Technique , 1988 .

[269]  P. Caravani,et al.  Identification of Damping Coefficients in Multidimensional Linear Systems , 1974 .

[270]  Thomas Andrianne,et al.  Damping identification of lightly damped linear dynamic systems using common-base proper orthogonal decomposition , 2012 .

[271]  Huiqing Xie,et al.  Simultaneous Iterative Method for Eigenpair Derivatives of Damped Systems , 2013 .

[272]  Subrata Chakraborty,et al.  IDENTIFICATION OF DAMPING PARAMETERS OF LINEAR DYNAMIC SYSTEM , 2009 .

[273]  Mehdi Ahmadian,et al.  A New Method for Finding Symmetric Form of Asymmetric Finite-Dimensional Dynamic Systems , 1987 .

[274]  Luis E. Suarez,et al.  Eigenproperties of nonclassically damped primary structure and oscillator systems , 1987 .

[275]  Sondipon Adhikari,et al.  Linear system identification using proper orthogonal decomposition , 2007 .

[276]  Sondipon Adhikari,et al.  Rayleigh Quotient and Dissipative Systems , 2008 .

[277]  Sondipon Adhikari,et al.  Eigenvalues of linear viscoelastic systems , 2009 .

[278]  S. Adhikari,et al.  Energy Harvesting Dynamic Vibration Absorbers , 2013 .

[279]  Christian Pommer,et al.  Simultaneously normalizable matrices , 1987 .

[280]  Randall J. Allemang,et al.  A Correlation Coefficient for Modal Vector Analysis , 1982 .

[281]  Y. Yiu,et al.  Substructure and finite element formulation for linear viscoelastic materials , 1994 .

[282]  C. S. Manohar,et al.  Identification of dynamical systems with fractional derivative damping models using inverse sensitivity analysis , 2009 .

[283]  Sondipon Adhikari,et al.  Non-local finite element analysis of damped beams , 2007 .

[284]  A. Leissa On a curve veering aberration , 1974 .

[285]  Huiqing Xie,et al.  An iterative method for partial derivatives of eigenvectors of quadratic eigenvalue problems , 2012 .

[286]  Michel Potier-Ferry,et al.  A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures , 2001 .

[287]  T. Randolph,et al.  Computation of eigenvalues and eigenvectors of nonclassically damped systems , 1995 .

[288]  Zhen-Yu Zhang,et al.  Eigensensitivity Analysis of a Defective Matrix with Zero First-Order Eigenvalue Derivatives , 2004 .

[289]  Restricted Padé scheme in computational structural dynamics , 2001 .

[290]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[291]  Daniel J. Inman,et al.  Vibration analysis of viscoelastic beams by separation of variables and modal analysis , 1989 .

[292]  Sondipon Adhikari,et al.  Quantification of non-viscous damping in discrete linear systems , 2003 .

[293]  G. T. Zheng,et al.  Component Synthesis Method for Transient Response of Nonproportionally Damped Structures , 2010 .

[294]  Cheon-Hong Min,et al.  Direct identification of non-proportional modal damping matrix for lumped mass system using modal parameters , 2012 .

[295]  Francesco Ricciardelli,et al.  Random Vibration of Systems with Viscoelastic Memory , 2004 .

[296]  F. Ma,et al.  The decoupling of damped linear systems in configuration and state spaces , 2011 .

[297]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[298]  K. Fernow New York , 1896, American Potato Journal.

[299]  Forced response of a viscoelastically damped rod using the superposition of modal contribution functions , 2008 .

[301]  Zhen-yu Zhang,et al.  Approximate method for eigensensitivity analysis of a defective matrix , 2011, J. Comput. Appl. Math..

[302]  On Pearl's Paper "A Decomposition Theorem for Matrices"* , 1969, Canadian Mathematical Bulletin.

[303]  Daniel J. Inman,et al.  On damping mechanisms in beams , 1991 .

[304]  Noureddine Bouhaddi,et al.  Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures , 2010 .

[305]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[306]  Da-tong Song,et al.  Eigensolution reanalysis of modified structures using perturbations and Rayleigh quotients , 1994 .

[307]  Tao Xu,et al.  Fast sensitivity analysis of defective system , 2010, Appl. Math. Comput..

[308]  Sondipon Adhikari,et al.  Optimal complex modes and an index of damping non-proportionality , 2004 .

[309]  T. K. Hasselman,et al.  Modal Coupling in Lightly Damped Structures , 1976 .

[310]  Firdaus E. Udwadia,et al.  A Note on Nonproportional Damping , 2009 .

[311]  Bogdan I. Epureanu,et al.  A component damping identification method for mistuned blisks , 2013 .

[312]  Yuanfeng Wang,et al.  Frequency-domain analysis of exponentially damped linear systems , 2013 .

[313]  F. R. Vigneron A Natural Modes Model and Modal Identities for Damped Linear Structures , 1986 .

[314]  Jim Woodhouse,et al.  Experimental identification of viscous damping in linear vibration , 2009 .

[315]  Wenlung Li,et al.  Evaluation of the damping ratio for a base-excited system by the modulations of responses , 2005 .

[316]  Chong-Won Lee,et al.  Dynamic reanalysis of weakly non-proportionally damped systems , 1986 .

[317]  W. Gawronski,et al.  RESPONSE ERRORS OF NON-PROPORTIONALLY LIGHTLY DAMPED STRUCTURES , 1997 .

[318]  Daniel J. Inman,et al.  A TUTORIAL ON COMPLEX EIGENVALUES , 2002 .

[319]  Daniel J. Inman,et al.  A survey of damping matrix identification , 1998 .

[320]  Hongyu Shen,et al.  A Time-History Analysis Algorithm of a Non-viscously Damped System Using Gauss Precise Integration , 2009, AICI.

[321]  Sondipon Adhikari,et al.  Damping modelling using generalized proportional damping , 2006 .

[322]  J. A. Brandon,et al.  Derivation and significance of second-order modal design sensitivities , 1984 .

[323]  Sondipon Adhikari Classical normal modes in nonviscously damped linear systems , 2001 .

[324]  S. Adhikari An iterative approach for nonproportionally damped systems , 2011 .

[325]  F. Ma,et al.  On The Decoupling Approximation in Damped Linear Systems , 2008 .

[326]  S. G. Hutton,et al.  Closed-Form Solutions and the Eigenvalue Problem for Vibration of Discrete Viscoelastic Systems , 1997 .

[327]  Eric E. Ungar,et al.  The status of engineering knowledge concerning the damping of built-up structures , 1973 .

[328]  Mark Persoff UK , 1999, EC Tax Review.

[329]  J. P. Bandstra,et al.  Comparison of Equivalent Viscous Damping and Nonlinear Damping in Discrete and Continuous Vibrating Systems , 1983 .

[330]  S. V. Modak,et al.  A method for damping matrix identification using frequency response data , 2012 .

[331]  Francesco Ricciardelli,et al.  Time‐domain response of linear hysteretic systems to deterministic and random excitations , 2005 .

[332]  O. Taussky Positive-definite matrices and their role in the study of the characteristic roots of general matrices☆ , 1968 .

[333]  D. Inman,et al.  Identification of a Nonproportional Damping Matrix from Incomplete Modal Information , 1991 .

[334]  K. Veselic,et al.  Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .

[335]  Daniel Joseph Segalman,et al.  Modelling joint friction in structural dynamics , 2005 .

[337]  O. W. Thomas Florida , 1980, Bird Student.

[338]  D. J. Mead Structural damping and damped vibration , 2002 .

[339]  D. L. Cronin,et al.  Approximation for Determining Harmonically Excited Response of Nonclassically Damped Systems , 1976 .

[340]  S. S. Law,et al.  Identification of structural damping in time domain , 2009 .

[342]  S. H. Crandall,et al.  The Hysteretic Damping Model in Vibration Theory , 1991 .

[343]  Atul Bhaskar,et al.  Estimates of errors in the frequency response of non-classically damped systems , 1995 .

[344]  F. Cortés,et al.  Longitudinal vibration of a damped rod. Part I: Complex natural frequencies and mode shapes , 2006 .

[345]  Richard Evelyn Donohue Bishop,et al.  On the dynamics of linear non-conservative systems , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[346]  John William Strutt Scientific Papers: A Theorem relating to the Time-Moduli of Dissipative Systems , 2009 .

[347]  Kenan Y. Sanliturk,et al.  A novel definition for quantification of mode shape complexity , 2013 .

[348]  J. L. Pérez-Aparicio,et al.  Multiparametric computation of eigenvalues for linear viscoelastic structures , 2013 .

[349]  Etienne Balmes,et al.  New Results on the Identification of Normal Modes from Experimental Complex Modes , 1994 .

[350]  C. Eckart,et al.  A principal axis transformation for non-hermitian matrices , 1939 .

[351]  Sondipon Adhikari,et al.  Derivatives of Complex Eigenvectors Using Nelson's Method , 2000 .

[352]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[353]  George A. Lesieutre,et al.  Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties , 1992 .

[354]  Qing-Hua Zeng,et al.  Highly Accurate Modal Method for Calculating Eigenvector Derivatives in Viscous Damping Systems , 1995 .

[355]  Li Li,et al.  A study on design sensitivity analysis for general nonlinear eigenproblems , 2013 .

[356]  Nicholas A J Lieven,et al.  On the Quantification of Eigenvalue Curve Veering: A Veering Index , 2011 .

[357]  L. Munteanu,et al.  On the Beams with External Auxetic Patches , 2009 .

[358]  M. Biot Linear thermodynamics and the mechanics of solids , 1958 .

[359]  C. Sultan Proportional damping approximation using the energy gain and simultaneous perturbation stochastic approximation , 2010 .