Nonnegative Matrix Factorization

Matrix factorization or factor analysis is an important task that is helpful in the analysis of high-dimensional real-world data. SVD is a classical method for matrix factorization, which gives the optimal low-rank approximation to a real-valued matrix in terms of the squared error. Many application areas, including information retrieval, pattern recognition, and data mining, require processing of binary rather than real data.

[1]  Cong Li,et al.  Pareto-Path Multitask Multiple Kernel Learning , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Lucas C. Parra,et al.  Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain , 2004, IEEE Transactions on Medical Imaging.

[3]  Huchuan Lu,et al.  On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization , 2013, Signal Process..

[4]  Jing Hua,et al.  Non-negative matrix factorization for semi-supervised data clustering , 2008, Knowledge and Information Systems.

[5]  Zhigang Luo,et al.  Online Nonnegative Matrix Factorization With Robust Stochastic Approximation , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[6]  Xuelong Li,et al.  Constrained Nonnegative Matrix Factorization for Image Representation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Raul Kompass,et al.  A Generalized Divergence Measure for Nonnegative Matrix Factorization , 2007, Neural Computation.

[8]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[9]  Yue Wang,et al.  Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation , 2008, Comput. Intell. Neurosci..

[10]  Yihong Gong,et al.  Document clustering by concept factorization , 2004, SIGIR '04.

[11]  Zhaoshui He,et al.  Minimum-Volume-Constrained Nonnegative Matrix Factorization: Enhanced Ability of Learning Parts , 2011, IEEE Transactions on Neural Networks.

[12]  Maryam Fazel,et al.  Iterative reweighted algorithms for matrix rank minimization , 2012, J. Mach. Learn. Res..

[13]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[14]  Heiko Wersing,et al.  A Model for Learning Topographically Organized Parts-Based Representations of Objects in Visual Cortex: Topographic Nonnegative Matrix Factorization , 2009, Neural Computation.

[15]  Erkki Oja,et al.  Linear and Nonlinear Projective Nonnegative Matrix Factorization , 2010, IEEE Transactions on Neural Networks.

[16]  Inderjit S. Dhillon,et al.  Generalized Nonnegative Matrix Approximations with Bregman Divergences , 2005, NIPS.

[17]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[18]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.

[19]  Andrzej Cichocki,et al.  New Algorithms for Non-Negative Matrix Factorization in Applications to Blind Source Separation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[20]  Zhenyue Zhang,et al.  Low-Rank Matrix Approximation with Manifold Regularization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Erkki Oja,et al.  Quadratic nonnegative matrix factorization , 2012, Pattern Recognit..

[22]  Zhihua Zhang,et al.  Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition , 2015, J. Mach. Learn. Res..

[23]  Andrzej Cichocki,et al.  Nonnegative matrix factorization with constrained second-order optimization , 2007, Signal Process..

[24]  Thomas Blumensath,et al.  Directional Clustering Through Matrix Factorization , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[25]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .

[26]  Haesun Park,et al.  Fast bregman divergence NMF using taylor expansion and coordinate descent , 2012, KDD.

[27]  Dietrich Lehmann,et al.  Nonsmooth nonnegative matrix factorization (nsNMF) , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jim Jing-Yan Wang,et al.  Max-min distance nonnegative matrix factorization , 2013, Neural Networks.

[29]  Ruoyu Li,et al.  Data Mining Based Full Ceramic Bearing Fault Diagnostic System Using AE Sensors , 2011, IEEE Transactions on Neural Networks.

[30]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems , 2008, Comput. Intell. Neurosci..

[31]  Zhaoshui He,et al.  Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering , 2011, IEEE Transactions on Neural Networks.

[32]  I. Dhillon,et al.  Fast Projection-Based Methods for the Least Squares Nonnegative Matrix Approximation Problem , 2008 .

[33]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[34]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[35]  Chih-Jen Lin,et al.  On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization , 2007, IEEE Transactions on Neural Networks.

[36]  Anastasios Tefas,et al.  Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification , 2006, IEEE Transactions on Neural Networks.

[37]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[38]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[39]  Andri Mirzal,et al.  A convergent algorithm for orthogonal nonnegative matrix factorization , 2014, J. Comput. Appl. Math..

[40]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[41]  Mao Ye,et al.  Convergence Analysis of Graph Regularized Non-Negative Matrix Factorization , 2014, IEEE Transactions on Knowledge and Data Engineering.

[42]  Seungjin Choi,et al.  Semi-Supervised Nonnegative Matrix Factorization , 2010, IEEE Signal Processing Letters.

[43]  Chris H. Q. Ding,et al.  Symmetric Nonnegative Matrix Factorization for Graph Clustering , 2012, SDM.

[44]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[45]  Hongtao Lu,et al.  Pairwise constrained concept factorization for data representation , 2014, Neural Networks.

[46]  Václav Snásel,et al.  Binary Factor Analysis with Genetic Algorithms , 2005, WSTST.

[47]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[48]  Andrzej Cichocki,et al.  Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches , 2007, Int. J. Neural Syst..

[49]  Ali Taylan Cemgil,et al.  Bayesian Inference for Nonnegative Matrix Factorisation Models , 2009, Comput. Intell. Neurosci..

[50]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[51]  Wray L. Buntine Variational Extensions to EM and Multinomial PCA , 2002, ECML.

[52]  Fei Wang,et al.  Semi-Supervised Clustering via Matrix Factorization , 2008, SDM.

[53]  Yuan Yan Tang,et al.  Topology Preserving Non-negative Matrix Factorization for Face Recognition , 2008, IEEE Transactions on Image Processing.

[54]  Cheng Soon Ong,et al.  Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .

[55]  Chris H. Q. Ding,et al.  On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering , 2005, SDM.

[56]  Franz Pernkopf,et al.  Sparse nonnegative matrix factorization with ℓ0-constraints , 2012, Neurocomputing.

[57]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[58]  Chris H. Q. Ding,et al.  Robust nonnegative matrix factorization using L21-norm , 2011, CIKM '11.

[59]  Jiawei Han,et al.  Locally Consistent Concept Factorization for Document Clustering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[60]  Yukihiko Yamashita,et al.  Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis , 2015, Signal Process..

[61]  Hongwei Liu,et al.  Solving non-negative matrix factorization by alternating least squares with a modified strategy , 2013, Data Mining and Knowledge Discovery.

[62]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[63]  Chris H. Q. Ding,et al.  Convex and Semi-Nonnegative Matrix Factorizations , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Jiebo Luo,et al.  Constrained Clustering With Nonnegative Matrix Factorization , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[65]  Nicolas Gillis,et al.  Sparse and unique nonnegative matrix factorization through data preprocessing , 2012, J. Mach. Learn. Res..

[66]  Jorma Laaksonen,et al.  Multiplicative updates for non-negative projections , 2007, Neurocomputing.

[67]  Stefanos Zafeiriou,et al.  Nonlinear Non-Negative Component Analysis Algorithms , 2010, IEEE Transactions on Image Processing.

[68]  Bhiksha Raj,et al.  Probabilistic Latent Variable Models as Nonnegative Factorizations , 2008, Comput. Intell. Neurosci..

[69]  Mark D. Plumbley,et al.  Theorems on Positive Data: On the Uniqueness of NMF , 2008, Comput. Intell. Neurosci..

[70]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[71]  Lin Wu,et al.  A Fast Algorithm for Nonnegative Matrix Factorization and Its Convergence , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[72]  Éric Gaussier,et al.  Relation between PLSA and NMF and implications , 2005, SIGIR '05.

[73]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[74]  Inderjit S. Dhillon,et al.  Fast coordinate descent methods with variable selection for non-negative matrix factorization , 2011, KDD.

[75]  Nicolas Gillis,et al.  Robust near-separable nonnegative matrix factorization using linear optimization , 2013, J. Mach. Learn. Res..

[76]  Xuelong Li,et al.  Deterministic Column-Based Matrix Decomposition , 2010, IEEE Transactions on Knowledge and Data Engineering.

[77]  S. Muthukrishnan,et al.  Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods , 2006, APPROX-RANDOM.

[78]  Zhang Yi,et al.  Convergence Analysis of Non-Negative Matrix Factorization for BSS Algorithm , 2010, Neural Processing Letters.

[79]  James T. Kwok,et al.  Large-Scale Nyström Kernel Matrix Approximation Using Randomized SVD , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[80]  Zhihua Zhang,et al.  Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling , 2013, J. Mach. Learn. Res..

[81]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[82]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .