Projection methods preserving Lyapunov functions

In this paper we consider ordinary differential equations with a known Lyapunov function. We study the use of Runge–Kutta methods provided with a dense output and a projection technique to preserve any given Lyapunov function. This approach extends previous work of Grimm and Quispel (BIT 45, 2005), allowing the use of Runge–Kutta methods for which the associated quadrature formula does not need to have positive or zero coefficients. Some numerical experiments show the good performance of the proposed technique.

[1]  J. Craggs Applied Mathematical Sciences , 1973 .

[2]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[3]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[4]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[5]  L. Shampine Interpolation for Runge–Kutta Methods , 1985 .

[6]  Wayne H. Enright,et al.  Interpolants for Runge-Kutta formulas , 1986, TOMS.

[7]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[8]  Manuel Calvo,et al.  A new embedded pair of Runge-Kutta formulas of orders 5 and 6 , 1990 .

[9]  V. Lakshmikantham,et al.  Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems , 1991 .

[10]  Marino Zennaro,et al.  Derivation of Efficient, Continuous, Explicit Runge-Kutta Methods , 1992, SIAM J. Sci. Comput..

[11]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[12]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[13]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[14]  Desmond J. Higham,et al.  The tolerance proportionality of adaptive ODE solvers , 1993 .

[15]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[16]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[17]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[18]  Nicolas Robidoux,et al.  UNIFIED APPROACH TO HAMILTONIAN SYSTEMS, POISSON SYSTEMS, GRADIENT SYSTEMS, AND SYSTEMS WITH LYAPUNOV FUNCTIONS OR FIRST INTEGRALS , 1998 .

[19]  Arieh Iserles,et al.  Geometric integration: numerical solution of differential equations on manifolds , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .

[22]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[23]  C. Budd,et al.  Geometric integration and its applications , 2003 .

[24]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[25]  G. Quispel,et al.  Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .

[26]  Manuel Calvo,et al.  On the Preservation of Invariants by Explicit Runge-Kutta Methods , 2006, SIAM J. Sci. Comput..

[27]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[28]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..