Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization

This paper deals with a parametric family of convex semi-infinite optimization problems for which linear perturbations of the objective function and continuous perturbations of the right-hand side of the constraint system are allowed. In this context, Cánovas et al. (SIAM J. Optim. 18:717–732, [2007]) introduced a sufficient condition (called ENC in the present paper) for the strong Lipschitz stability of the optimal set mapping. Now, we show that ENC also entails high stability for the minimal subsets of indices involved in the KKT conditions, yielding a nice behavior not only for the optimal set mapping, but also for its inverse. Roughly speaking, points near optimal solutions are optimal for proximal parameters. In particular, this fact leads us to a remarkable simplification of a certain expression for the (metric) regularity modulus given in Cánovas et al. (J. Glob. Optim. 41:1–13, [2008]) (and based on Ioffe (Usp. Mat. Nauk 55(3):103–162, [2000]; Control Cybern. 32:543–554, [2003])), which provides a key step in further research oriented to find more computable expressions of this regularity modulus.

[1]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[2]  Александр Давидович Иоффе,et al.  Метрическая регулярность и субдифференциальное исчисление@@@Metric regularity and subdifferential calculus , 2000 .

[3]  Günther Nürnberger,et al.  Unicity in Semi-Infinite Optimization , 1984 .

[4]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[5]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[6]  M. J. Cánovas,et al.  On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization , 2008 .

[7]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[8]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[9]  Alexander D. Ioffe On robustness of the regularity property of maps , 2003 .

[10]  S. Helbig,et al.  Unicity Results for General Linear Semi-Infinite Optimization Problems Using a New Concept of Active Constraints , 1998 .

[11]  Abderrahim Hantoute,et al.  Lipschitz behavior of convex semi-infinite optimization problems: a variational approach , 2008, J. Glob. Optim..

[12]  D. Klatte Nonsmooth equations in optimization , 2002 .

[13]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[14]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[15]  B. Brosowski,et al.  Parametric Optimization and Approximation , 1985 .