Analyzing Analytics

Many organizations today are faced with the challenge of processing and distilling information from huge and growing collections of data. Such organizations are increasingly deploying sophisticated mathematical algorithms to model the behavior of their business processes to discover correlations in the data, to predict trends and ultimately drive decisions to optimize their operations. These techniques, are known collectively as analytics, and draw upon multiple disciplines, including statistics, quantitative analysis, data mining, and machine learning. In this survey paper, we identify some of the key techniques employed in analytics both to serve as an introduction for the non-specialist and to explore the opportunity for greater optimizations for parallelization and acceleration using commodity and specialized multi-core processors. We are interested in isolating and documenting repeated patterns in analytical algorithms, data structures and data types, and in understanding howthese could be most effectively mapped onto parallel infrastructure. To this end, we focus on analytical models that can be executed using different algorithms. For most major model types, we study implementations of key algorithms to determine common computational and runtime patterns. We then use this information to characterize and recommend suitable parallelization strategies for these algorithms, specifically when used in data management workloads.

[1]  Paul Chow,et al.  FPGA Acceleration of MultiFactor CDO Pricing , 2011, TRETS.

[2]  David A. Bader,et al.  Scalable and High Performance Betweenness Centrality on the GPU , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[3]  Jay Liebowitz Beyond decision support systems: the role of operations research in expert systems , 1988 .

[4]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[5]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[6]  Wolfgang Lehner,et al.  Bridging two worlds with RICE , 2011, VLDB 2011.

[7]  Antonino Tumeo,et al.  Efficient pattern matching on GPUs for intrusion detection systems , 2010, CF '10.

[8]  Sanjay Ghemawat,et al.  MapReduce: a flexible data processing tool , 2010, CACM.

[9]  Berin Martini,et al.  Hardware accelerated convolutional neural networks for synthetic vision systems , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[10]  Sam Lightstone,et al.  DB2 with BLU Acceleration: So Much More than Just a Column Store , 2013, Proc. VLDB Endow..

[11]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[12]  Maya Gokhale,et al.  Language classification using n-grams accelerated by FPGA-based Bloom filters , 2007, HPRCTA.

[13]  Rajesh Bordawekar,et al.  IBM Research Report Analyzing Analytics Part 1: A Survey of Business Analytics Models and Algorithms , 2011 .

[14]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[15]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[16]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[17]  Kurt Hornik,et al.  Text Mining Infrastructure in R , 2008 .

[18]  Srinivas Aluru,et al.  Finding Motifs in Biological Sequences Using the Micron Automata Processor , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[19]  Teemu Mutanen,et al.  Customer churn analysis - a case study , 2006 .

[20]  John Langford,et al.  Scaling up machine learning: parallel and distributed approaches , 2011, KDD '11 Tutorials.

[21]  S. Dumais Latent Semantic Analysis. , 2005 .

[22]  Luis M. de Campos,et al.  Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks , 2010, Int. J. Approx. Reason..

[23]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[24]  Tim Foley,et al.  KD-tree acceleration structures for a GPU raytracer , 2005, HWWS '05.

[25]  Kenneth A. Ross,et al.  Q100: the architecture and design of a database processing unit , 2014, ASPLOS.

[26]  George Karypis,et al.  Common Pharmacophore Identification Using Frequent Clique Detection Algorithm , 2009, J. Chem. Inf. Model..

[27]  Karla Hoffman,et al.  Combinatorial optimization: current successes and directions for the future , 2000 .

[28]  Padhraic Smyth,et al.  Business applications of data mining , 2002, CACM.

[29]  Alexander Zeier,et al.  SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units , 2009, Proc. VLDB Endow..

[30]  Philip S. Yu,et al.  SPADE: the system s declarative stream processing engine , 2008, SIGMOD Conference.

[31]  Srinivasan Parthasarathy,et al.  Parallel Algorithms for Discovery of Association Rules , 1997, Data Mining and Knowledge Discovery.

[32]  Ying Zhao,et al.  Effective document clustering for large heterogeneous law firm collections , 2005, International Conference on Artificial Intelligence and Law.

[33]  Jephthah A. Abara,et al.  Applying Integer Linear Programming to the Fleet Assignment Problem , 1989 .

[34]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[35]  A. Lyon Dealing with data , 1970 .

[36]  William Stafford Noble,et al.  Support vector machine , 2013 .

[37]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[38]  Jeffrey D. Ullman,et al.  Implementing data cubes efficiently , 1996, SIGMOD '96.

[39]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[40]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[41]  Wayne Luk,et al.  A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation , 2009, FPGA '09.

[42]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[43]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[44]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[45]  Paul D. Franzon,et al.  Configurable string matching hardware for speeding up intrusion detection , 2005, CARN.

[46]  Laks V. S. Lakshmanan,et al.  QC-trees: an efficient summary structure for semantic OLAP , 2003, SIGMOD '03.

[47]  Kaushik Roy,et al.  Analysis and characterization of inherent application resilience for approximate computing , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[48]  Sudhakar Yalamanchili,et al.  Red Fox: An Execution Environment for Relational Query Processing on GPUs , 2014, CGO '14.

[49]  Christine McGourty Dealing with the data , 1989, Nature.

[50]  George E. Tita,et al.  Self-Exciting Point Process Modeling of Crime , 2011 .

[51]  Andrew Kusiak,et al.  Data Mining in Manufacturing: A Review , 2006 .

[52]  Jennifer Chu-Carroll,et al.  Building Watson: An Overview of the DeepQA Project , 2010, AI Mag..

[53]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[54]  A. Grimshaw,et al.  High Performance and Scalable Radix Sorting: a Case Study of Implementing Dynamic Parallelism for GPU Computing , 2011, Parallel Process. Lett..

[55]  Hans-Arno Jacobsen,et al.  Flexible Query Processor on FPGAs , 2013, Proc. VLDB Endow..

[56]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[57]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[58]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[59]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[60]  Sheng-De Wang,et al.  A Data Parallel Approach to XML Parsing and Query , 2011, 2011 IEEE International Conference on High Performance Computing and Communications.

[61]  Frederick Reiss,et al.  Hardware-accelerated regular expression matching for high-throughput text analytics , 2013, 2013 23rd International Conference on Field programmable Logic and Applications.

[62]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[63]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[64]  Srinivasan Parthasarathy,et al.  Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining , 2011, Proc. VLDB Endow..

[65]  John Cavazos,et al.  Accelerating financial applications on the GPU , 2013, GPGPU@ASPLOS.

[66]  Jerome Spanier,et al.  Dynamic creation of pseudorandom number generators , 2000 .

[67]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[68]  Ravi Nair,et al.  Big data needs approximate computing , 2014, Commun. ACM.

[69]  Bingsheng He,et al.  Efficient gather and scatter operations on graphics processors , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[70]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[71]  E. Culurciello,et al.  NeuFlow: Dataflow vision processing system-on-a-chip , 2012, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS).

[72]  Mikko H. Lipasti,et al.  Accelerating search and recognition workloads with SSE 4.2 string and text processing instructions , 2011, (IEEE ISPASS) IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE.

[73]  Piotr Indyk,et al.  Nearest Neighbors in High-Dimensional Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[74]  A. Ravishankar Rao,et al.  A spatio-temporal support vector machine searchlight for fMRI analysis , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[75]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[76]  James R. Larus,et al.  A reconfigurable fabric for accelerating large-scale datacenter services , 2014, 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).

[77]  Graham Kirsch Active memory: Micron's Yukon , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[78]  Sougata Mukherjea,et al.  Social ties and their relevance to churn in mobile telecom networks , 2008, EDBT '08.

[79]  Yao Wang,et al.  A robust and scalable clustering algorithm for mixed type attributes in large database environment , 2001, KDD '01.

[80]  I. Lustig,et al.  Interior Point Methods for Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick! , 1990 .

[81]  Dhabaleswar K. Panda,et al.  Accelerating Spark with RDMA for Big Data Processing: Early Experiences , 2014, 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects.

[82]  Jason Cong,et al.  Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks , 2015, FPGA.

[83]  Yossi Richter,et al.  Predicting Customer Churn in Mobile Networks through Analysis of Social Groups , 2010, SDM.

[84]  Sougata Mukherjea,et al.  On the structural properties of massive telecom call graphs: findings and implications , 2006, CIKM '06.

[85]  Jon M. Kleinberg,et al.  Applications of linear algebra in information retrieval and hypertext analysis , 1999, PODS '99.

[86]  Cynthia Barnhart,et al.  UPS Optimizes Its Air Network , 2004, Interfaces.

[87]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[88]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[89]  Hans-Arno Jacobsen,et al.  Efficient event processing through reconfigurable hardware for algorithmic trading , 2010, Proc. VLDB Endow..

[90]  Wolfgang Lehner,et al.  Bridging Two Worlds with RICE Integrating R into the SAP In-Memory Computing Engine , 2011, Proc. VLDB Endow..

[91]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[92]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[93]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[94]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[95]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[96]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[97]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[98]  Martin L. Kersten,et al.  Optimizing database architecture for the new bottleneck: memory access , 2000, The VLDB Journal.

[99]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[100]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[101]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[102]  P. Boyle Options: A Monte Carlo approach , 1977 .

[103]  Frank Kienle,et al.  An Energy Efficient FPGA Accelerator for Monte Carlo Option Pricing with the Heston Model , 2011, 2011 International Conference on Reconfigurable Computing and FPGAs.

[104]  P. J. Narayanan,et al.  Accelerating Large Graph Algorithms on the GPU Using CUDA , 2007, HiPC.

[105]  C. Apté,et al.  Analyzing Analytics: Part 1: A Survey of Business Analytics Models and Algorithms , 2011 .

[106]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[107]  Vikas Sindhwani,et al.  Extracting insights from social media with large-scale matrix approximations , 2011, IBM J. Res. Dev..

[108]  Jeffrey K. Uhlmann,et al.  Satisfying General Proximity/Similarity Queries with Metric Trees , 1991, Inf. Process. Lett..

[109]  John W. Lockwood,et al.  Deep packet inspection using parallel bloom filters , 2004, IEEE Micro.

[110]  Jianwen Zhu,et al.  A 1 cycle-per-byte XML parsing accelerator , 2010, FPGA '10.

[111]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[112]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[113]  Mikko H. Lipasti,et al.  BenchNN: On the broad potential application scope of hardware neural network accelerators , 2012, 2012 IEEE International Symposium on Workload Characterization (IISWC).

[114]  José Duato,et al.  Exploiting SIMD Instructions in Current Processors to Improve Classical String Algorithms , 2012, ADBIS.

[115]  Dharmendra S. Modha,et al.  A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[116]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[117]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[118]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[119]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[120]  Zhisong Fu,et al.  MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs , 2014, GRADES.

[121]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[122]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[123]  L. Nelson Data, data everywhere. , 1997, Critical care medicine.

[124]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[125]  Ravi Nair Models for energy-efficient approximate computing , 2010, 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED).

[126]  Jia Wang,et al.  DaDianNao: A Machine-Learning Supercomputer , 2014, 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture.

[127]  Maya Paczuski,et al.  Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  Ole John,et al.  Model for a Specific Decision Support System for Crew Requirement Planning in Ship Management , 2014 .

[129]  Li Xiu,et al.  Application of data mining techniques in customer relationship management: A literature review and classification , 2009, Expert Syst. Appl..

[130]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[131]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[132]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[133]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[134]  C. Stam,et al.  Small-world networks and disturbed functional connectivity in schizophrenia , 2006, Schizophrenia Research.

[135]  Karl Rupp,et al.  GPU-Accelerated Non-negative Matrix Factorization for Text Mining , 2012, NLDB.

[136]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[137]  Din J. Wasem,et al.  Mining of Massive Datasets , 2014 .

[138]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[139]  Jeanne G. Harris,et al.  Competing on Analytics: The New Science of Winning , 2007 .

[140]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[141]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[142]  Magdalini Eirinaki Data Mining for Business Intelligence , 2008 .

[143]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[144]  Ashish Verma,et al.  Enabling analysts in managed services for CRM analytics , 2009, KDD.

[145]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[146]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[147]  Massimiliano Fatica,et al.  Pricing American options with least squares Monte Carlo on GPUs , 2013, WHPCF '13.

[148]  Kun-Lung Wu,et al.  A Code Generation Approach for Auto-Vectorization in the Spade Compiler , 2009, LCPC.

[149]  Yehuda Koren,et al.  All Together Now: A Perspective on the Netflix Prize , 2010 .

[150]  Kurt Bryan,et al.  The $25,000,000,000 Eigenvector: The Linear Algebra behind Google , 2006, SIAM Rev..

[151]  Hans-Arno Jacobsen,et al.  Towards vulnerability-based intrusion detection with event processing , 2011, DEBS '11.

[152]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[153]  Dominique Haughton,et al.  A Review of Two Text-Mining Packages , 2005 .

[154]  Anand Rajaraman,et al.  Mining of Massive Datasets , 2011 .

[155]  Cynthia Barnhart,et al.  Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment , 2004, Transp. Sci..

[156]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[157]  Goutam Dutta,et al.  A Survey of Mathematical Programming Applications in Integrated Steel Plants , 2001, Manuf. Serv. Oper. Manag..

[158]  Koji Nakano,et al.  Accelerating the CKY Parsing Using FPGAs , 2002, HiPC.

[159]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[160]  Dave Brown,et al.  Supplementary Material for An Efficient and Scalable Semiconductor Architecture for Parallel Automata Processing , 2013 .

[161]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[162]  Eli Shechtman,et al.  In defense of Nearest-Neighbor based image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[163]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[164]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[165]  Richard Cantor,et al.  Split Ratings and the Pricing of Credit Risk , 1997 .

[166]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[167]  Heiner Litz,et al.  High Frequency Trading Acceleration Using FPGAs , 2011, 2011 21st International Conference on Field Programmable Logic and Applications.

[168]  Noga Alon,et al.  Spectral Techniques in Graph Algorithms , 1998, LATIN.

[169]  Chris H. Q. Ding,et al.  Nonnegative Matrix Factorization for Combinatorial Optimization: Spectral Clustering, Graph Matching, and Clique Finding , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[170]  Joel H. Saltz,et al.  Evaluation of active disks for decision support databases , 2000, Proceedings Sixth International Symposium on High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550).

[171]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[172]  George Karypis,et al.  Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.

[173]  Tara N. Sainath,et al.  Parallel Deep Neural Network Training for Big Data on Blue Gene/Q , 2017, IEEE Transactions on Parallel and Distributed Systems.

[174]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[175]  Martin C. Herbordt,et al.  Families of FPGA-based accelerators for approximate string matching , 2007, Microprocess. Microsystems.

[176]  Caroline Ash Snapshot Electron Holography , 2011 .

[177]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[178]  Thomas H. Davenport,et al.  Analytics at Work: Smarter Decisions, Better Results , 2010 .

[179]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[180]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[181]  Ninghui Sun,et al.  DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning , 2014, ASPLOS.