Dark matter in UED: the role of the second KK level

We perform a complete calculation of the relic abundance of the KK-photon LKP in the universal extra dimension model including all coannihilation channels and all resonances. We show that the production of level 2 particles which decay dominantly into SM particles contribute significantly to coannihilation processes involving level 1 KK-leptons. As a result the preferred dark matter scale is increased to R−1 = 1.3 TeV. A dark matter candidate at or below the TeV scale can only be found in the non-minimal model by reducing the mass splittings between the KK-particles and the LKP. The LKP nucleon scattering cross section is typically small, σ < 10−10 pb, unless the KK-quarks are nearly degenerate with the LKP.

[1]  B. Beltrán Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO , 2010 .

[2]  Universal extra dimensions and the Higgs boson mass , 2002, hep-ph/0211023.

[3]  A. Semenov,et al.  micrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model , 2007, Comput. Phys. Commun..

[4]  Efficient coannihilation process through strong Higgs self-coupling in LKP dark matter annihilation , 2005, hep-ph/0512003.

[5]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[6]  T. Flacke,et al.  Nonminimal universal extra dimensions , 2008, 0811.1598.

[7]  E. Ramberg,et al.  Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber. , 2010, Physical Review Letters.

[8]  Bogdan A. Dobrescu,et al.  Bounds on Universal Extra Dimensions , 2000, hep-ph/0012100.

[9]  C. Winant,et al.  Limits on spin-dependent WIMP-nucleon cross sections from the XENON10 experiment. , 2008, Physical review letters.

[10]  Relic abundance of LKP dark matter in UED model including effects of second KK resonances , 2005, hep-ph/0508283.

[11]  Elastic scattering and direct detection of Kaluza-Klein dark matter , 2002, hep-ph/0209262.

[12]  E. al.,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[13]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[14]  A. Datta,et al.  Power law blitzkrieg in Universal Extra Dimension scenarios , 2006 .

[15]  S. Park,et al.  Split universal extra dimension and dark matter , 2009 .

[16]  S. Nandi,et al.  Collider implications of universal extra dimensions , 2002, hep-ph/0201300.

[17]  K. Matchev,et al.  Minimal universal extra dimensions in CalcHEP/CompHEP , 2010, 1002.4624.

[18]  S. Rosier-Lees,et al.  Indirect search for dark matter with micrOMEGAs_2.4 , 2010, Comput. Phys. Commun..

[19]  Claude Duhr,et al.  A comprehensive approach to new physics simulations , 2009, 0906.2474.

[20]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[21]  R. Young,et al.  Dark Matter, the MCSSM and lattice QCD , 2009, 0907.4177.

[22]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[23]  Radiative corrections to Kaluza-Klein masses , 2002, hep-ph/0204342.

[24]  M. Kakizaki,et al.  Significant effects of second Kaluza-Klein particles on dark matter physics , 2005, hep-ph/0502059.

[25]  A. Semenov,et al.  LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.2 , 2014, 1412.5016.

[26]  T Glanzman,et al.  Measurement of the cosmic ray e+ +e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. , 2009, Physical review letters.

[27]  Bosonic supersymmetry? Getting fooled at the CERN LHC , 2002, hep-ph/0205314.

[28]  M. Auger,et al.  Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO , 2009, 0907.0307.

[29]  Alexander Pukhov,et al.  CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages , 2004, hep-ph/0412191.

[30]  S. Kraml,et al.  Light mixed sneutrinos as thermal dark matter , 2010, 1008.0580.

[31]  Geraldine Servant,et al.  Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate? , 2003 .

[32]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[33]  C. Macesanu The Phenomenology of universal extra dimensions at hadron colliders , 2005, hep-ph/0510418.

[34]  Kyoungchul Kong,et al.  Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions , 2005 .

[35]  A. Datta,et al.  Exploring the universal extra dimension at the LHC , 2009, 0904.0937.

[36]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[37]  M. Drees,et al.  Neutralino-nucleon scattering reexamined. , 1993, Physical review. D, Particles and fields.

[38]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[39]  A. Pukhov,et al.  Requirements on collider data to match the precision of WMAP on supersymmetric dark matter. , 2004 .

[40]  R. Young,et al.  Dark matter, constrained minimal supersymmetric standard model, and lattice QCD. , 2009, Physical review letters.

[41]  Relic abundance of dark matter in the minimal universal extra dimension model , 2006, hep-ph/0605280.