The Role of Dual Consistency in Functional Accuracy: Error Estimation and Superconvergence
暂无分享,去创建一个
[1] Magnus Svärd,et al. On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..
[2] W. K. Anderson,et al. Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .
[3] O. Pironneau. On optimum design in fluid mechanics , 1974 .
[4] Antony Jameson,et al. Control theory based airfoil design using the Euler equations , 1994 .
[5] M. D. Salas,et al. On Problems Associated with Grid Convergence of Functionals , 2009 .
[6] D. Gottlieb,et al. A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .
[7] Antony Jameson,et al. Aerodynamic design via control theory , 1988, J. Sci. Comput..
[8] Ralf Hartmann. Error estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations , 2007, Int. J. Comput. Sci. Math..
[9] Joaquim R. R. A. Martins,et al. The complex-step derivative approximation , 2003, TOMS.
[10] John C. Vassberg,et al. In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .
[11] Tang Zhi,et al. Control theory based airfoil design using Euler equations , 2001 .
[12] O. Baysal,et al. Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations , 1991 .
[13] P. Goldbart,et al. Linear differential operators , 1967 .
[14] Rolf Rannacher,et al. Adaptive Galerkin finite element methods for partial differential equations , 2001 .
[15] Niles A. Pierce,et al. An Introduction to the Adjoint Approach to Design , 2000 .
[16] H. Kreiss,et al. Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .
[17] James Lu,et al. An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .
[18] Claes Johnson,et al. Adaptive error control for multigrid finite element , 1995, Computing.
[19] Philip L. Roe,et al. An Entropy Adjoint Approach to Mesh Refinement , 2010, SIAM J. Sci. Comput..
[20] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[21] George Trapp,et al. Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..
[22] G. R. Shubin,et al. A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .
[23] Masha Sosonkina,et al. Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[24] S. Scott Collis,et al. Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .
[25] Michael J. Aftosmis,et al. Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .
[26] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[27] Bertil Gustafsson,et al. The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .
[28] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[29] Jason E. Hicken,et al. Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .
[30] Timothy J. Baker,et al. Mesh generation: Art or science? , 2005 .
[31] Jason E. Hicken. Output error estimation for summation-by-parts finite-difference schemes , 2012, J. Comput. Phys..
[32] Jason E. Hicken,et al. Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..
[33] M. J. Rimlinger,et al. Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .
[34] Mathias Wintzer,et al. Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .
[35] D. Venditti,et al. Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .
[36] Mohamed Gad-el-Hak,et al. New Approach to Constrained Shape Optimization Using Genetic Algorithms , 1998 .
[37] M. Giles,et al. Algorithm Developments for Discrete Adjoint Methods , 2003 .
[38] D. Gottlieb,et al. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .
[39] David W. Zingg,et al. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction , 2007 .
[40] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[41] T. Barth,et al. An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .
[42] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[43] Jason E. Hicken,et al. Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..
[44] Jason E. Hicken,et al. A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..