The Role of Dual Consistency in Functional Accuracy: Error Estimation and Superconvergence

A discretization is dual consistent if it leads to a discrete dual problem that is a consistent approximation of the corresponding continuous dual problem. This paper investigates the impact of dual consistency on high-order summation-by-parts finite-difference schemes. In particular, dual consistent schemes lead to superconvergent functionals and accurate functional error estimates. Numerical examples demonstrate that dual consistent schemes significantly outperform dual inconsistent schemes in terms of functional accuracy and error-estimate effectiveness. The influence of dual consistency on general discretizations is discussed.

[1]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[2]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[3]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[4]  Antony Jameson,et al.  Control theory based airfoil design using the Euler equations , 1994 .

[5]  M. D. Salas,et al.  On Problems Associated with Grid Convergence of Functionals , 2009 .

[6]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[7]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[8]  Ralf Hartmann Error estimation and adjoint based refinement for an adjoint consistent DG discretisation of the compressible Euler equations , 2007, Int. J. Comput. Sci. Math..

[9]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[10]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[11]  Tang Zhi,et al.  Control theory based airfoil design using Euler equations , 2001 .

[12]  O. Baysal,et al.  Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations , 1991 .

[13]  P. Goldbart,et al.  Linear differential operators , 1967 .

[14]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[15]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[16]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[17]  James Lu,et al.  An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .

[18]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[19]  Philip L. Roe,et al.  An Entropy Adjoint Approach to Mesh Refinement , 2010, SIAM J. Sci. Comput..

[20]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[21]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[22]  G. R. Shubin,et al.  A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .

[23]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[24]  S. Scott Collis,et al.  Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems ∗ , 2002 .

[25]  Michael J. Aftosmis,et al.  Adjoint Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes , 2007 .

[26]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[27]  Bertil Gustafsson,et al.  The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .

[28]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[29]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[30]  Timothy J. Baker,et al.  Mesh generation: Art or science? , 2005 .

[31]  Jason E. Hicken Output error estimation for summation-by-parts finite-difference schemes , 2012, J. Comput. Phys..

[32]  Jason E. Hicken,et al.  Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..

[33]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[34]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[35]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[36]  Mohamed Gad-el-Hak,et al.  New Approach to Constrained Shape Optimization Using Genetic Algorithms , 1998 .

[37]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[38]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[39]  David W. Zingg,et al.  Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction , 2007 .

[40]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[41]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[42]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[43]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[44]  Jason E. Hicken,et al.  A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems , 2010, SIAM J. Sci. Comput..