Fractal plasmonic metamaterial with tunable properties in the near-infrared

Modulating the fractal dimension of nanoporous gold is possible to tune the effective dielectric response over a wide spectral range of infrared wavelengths. The plasma edge and effective plasma frequency depend on the fractal dimension, which can be controlled by varying the preparation condition. The fractal porous metal has superior plasmonic properties compared to bulk gold. The long skin depth of porous metal on the order of 100-200 nm, enables the penetration of optical energy deep into the nanopores where molecules can be loaded, thus achieving more effective light-matter coupling. These findings may open new pathways to engineering the optical response of fractal-like or selfsimilar metamaterials.

[1]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[2]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[3]  Paolo A Netti,et al.  Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization , 2010, Journal of materials science. Materials in medicine.

[4]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[5]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[6]  Patrick Onck,et al.  On the localized surface plasmon resonance modes in nanoporous gold films , 2014 .

[7]  H. Tang,et al.  Fractal dimension of pore-structure of porous metal materials made by stainless steel powder , 2012 .

[8]  Francesco De Angelis,et al.  Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared , 2018, ACS Photonics.

[9]  Gang Zhang,et al.  Plasmonic Nanochemistry Based on Nanohole Array. , 2017, ACS nano.

[10]  David Chapman,et al.  Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .

[11]  Matthew C. Dixon,et al.  Preparation, structure, and optical properties of nanoporous gold thin films. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[13]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[14]  Francesco De Angelis,et al.  Nanoporous gold leaves: preparation, optical characterization and plasmonic behavior in the visible and mid-infrared spectral regions , 2015 .

[15]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[16]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[17]  Francesco De Angelis,et al.  Thermoplasmonic Effect of Surface Enhanced Infrared Absorption in Vertical Nanoantenna Arrays , 2018 .

[18]  Douglas J. Paul,et al.  Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics , 2016 .

[19]  D. Garoli,et al.  Boosting infrared energy transfer in 3D nanoporous gold antennas. , 2017, Nanoscale.

[20]  Robert W. Boyd,et al.  Optical Properties of Nanostructured Optical Materials , 1996 .

[21]  Philippe Tassin,et al.  A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries , 2016 .

[22]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[23]  F. Romanato,et al.  Nanoporous gold plasmonic structures for sensing applications. , 2011, Optics express.

[24]  Denis Garoli,et al.  FIB lithography of nanoporous gold slits for extraordinary transmission , 2012 .

[25]  Peter Nordlander,et al.  Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. , 2013, Journal of the American Chemical Society.

[26]  Francesco De Angelis,et al.  Engineered/tailored nanoporous gold structures for infrared plasmonics , 2015, SPIE NanoScience + Engineering.

[27]  Valeria Caprettini,et al.  Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays , 2018, Nature Nanotechnology.

[28]  Mark I. Stockman,et al.  Theory of spoof plasmons in real metals , 2010, NanoScience + Engineering.

[29]  Denis Garoli,et al.  Nanoporous gold—Application to extraordinary optical transmission of light , 2013 .

[30]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[31]  Peter Zijlstra,et al.  Single-Molecule Plasmon Sensing: Current Status and Future Prospects , 2017, ACS sensors.

[32]  Mark I. Stockman,et al.  Spaser, Plasmonic Amplification, and Loss Compensation , 2013 .

[33]  Denis Garoli,et al.  Patterned nanoporous-gold thin layers: Structure control and tailoring of plasmonic properties , 2012 .

[34]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[35]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[36]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[37]  Denis Garoli,et al.  Coreactant electrochemiluminescence at nanoporous gold electrodes , 2018, Electrochimica Acta.

[38]  Vladimir M. Shalaev,et al.  Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications , 2012, Applied Physics B.

[39]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[40]  Evan L. Runnerstrom,et al.  Defect Engineering in Plasmonic Metal Oxide Nanocrystals. , 2016, Nano letters.

[41]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.