Dual-gated bilayer graphene hot-electron bolometer.

Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures.

[1]  P. Richards,et al.  Infrared Detectors for Astrophysics , 2005 .

[2]  C. N. Lau,et al.  Thermal contact resistance between graphene and silicon dioxide , 2009 .

[3]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[4]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[5]  A. Yacoby,et al.  Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene , 2010, Science.

[6]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[7]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[8]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[9]  C. N. Lau,et al.  Graphene-based quantum Hall effect infrared photodetector operating at liquid Nitrogen temperatures , 2011 .

[10]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[11]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[12]  L. Levitov,et al.  Supercollisions and the Bottleneck for Electron-Lattice Cooling in Graphene , 2011 .

[13]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[14]  C. N. Lau,et al.  Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. , 2011, Nature nanotechnology.

[15]  Jiwoong Park,et al.  Ultrafast relaxation dynamics of hot optical phonons in graphene , 2009, 0909.4912.

[16]  T. Heinz,et al.  Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite , 2009, 1106.1458.

[17]  S. Sarma,et al.  Ballistic hot electron transport in graphene , 2008, 0806.0436.

[18]  Composite bolometers for submillimeter wavelengths. , 1978, Applied optics.

[19]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[20]  L. Vandersypen,et al.  Bipolar supercurrent in graphene , 2006, Nature.

[21]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[22]  E. Hendry,et al.  Hot phonon decay in supported and suspended exfoliated graphene , 2010, 1012.3927.

[23]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[24]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[25]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[26]  R. Stephens Low-Temperature Specific Heat and Thermal Conductivity of Noncrystalline Dielectric Solids , 1973 .

[27]  J. Zhu,et al.  Transport in gapped bilayer graphene: the role of potential fluctuations (Supplementary Information) , 2010, 1008.0984.

[28]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[29]  J. Shan,et al.  Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. , 2009, Physical review letters.

[30]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[31]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[32]  J. Misewich,et al.  The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy , 2010, Proceedings of the National Academy of Sciences.

[33]  J. Viljas,et al.  Electron-phonon heat transfer in monolayer and bilayer graphene , 2010, 1002.3502.

[34]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[35]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[36]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[37]  Hongkun Park,et al.  Gate-activated photoresponse in a graphene p-n junction. , 2010, Nano letters.

[38]  D. N. Basov,et al.  Determination of the electronic structure of bilayer graphene from infrared spectroscopy , 2008, 0809.1898.

[39]  Jie Shan,et al.  Ultrafast photoluminescence from graphene. , 2010, Physical review letters.

[40]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[41]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[42]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[43]  P. Wallace The Band Theory of Graphite , 1947 .

[44]  Jun Yan,et al.  Observation of anomalous phonon softening in bilayer graphene. , 2007, Physical review letters.

[45]  Pablo Jarillo-Herrero,et al.  Electronic transport in dual-gated bilayer graphene at large displacement fields. , 2010, Physical review letters.

[46]  David Olaya,et al.  Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. , 2007, Nature nanotechnology.

[47]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[48]  Adrian T. Lee,et al.  Superconducting bolometer for far-infrared Fourier transform spectroscopy , 2003 .

[49]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[50]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.