LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast.

[1]  Maria Bohnert,et al.  A metabolically controlled contact site between lipid droplets and vacuoles , 2023, bioRxiv.

[2]  Arpita Nandy,et al.  Manganese-driven CoQ deficiency , 2022, Nature Communications.

[3]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[4]  M. McNiven,et al.  Lipophagy at a glance. , 2022, Journal of cell science.

[5]  I. Boldogh,et al.  Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles , 2022, Frontiers in Cell and Developmental Biology.

[6]  F. Vögtle,et al.  Sterol Metabolism Differentially Contributes to Maintenance and Exit of Quiescence , 2022, Frontiers in Cell and Developmental Biology.

[7]  H. Al-Ali,et al.  Adaptive and maladaptive roles of lipid droplets in health and disease. , 2022, American journal of physiology. Cell physiology.

[8]  C. Kraft,et al.  Spatial control of avidity regulates initiation and progression of selective autophagy , 2021, Nature Communications.

[9]  F. Broeskamp,et al.  Phosphate Restriction Promotes Longevity via Activation of Autophagy and the Multivesicular Body Pathway , 2021, Cells.

[10]  R. Zechner,et al.  Lipolysis: cellular mechanisms for lipid mobilization from fat stores , 2021, Nature Metabolism.

[11]  L. Pon,et al.  Roles for L o microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast , 2021, Molecular biology of the cell.

[12]  Christof Osman,et al.  YeastMate: neural network-assisted segmentation of mating and budding events in Saccharomyces cerevisiae , 2021, bioRxiv.

[13]  Robert V Farese,et al.  The CYTOLD and ERTOLD pathways for lipid droplet-protein targeting. , 2021, Trends in biochemical sciences.

[14]  Markus J. Tamás,et al.  Nuclear envelope budding is a response to cellular stress , 2021, Proceedings of the National Academy of Sciences.

[15]  Mathias Beller,et al.  Lipid Droplet Contact Sites in Health and Disease. , 2021, Trends in cell biology.

[16]  H. Hariri,et al.  Glucose restriction drives spatial reorganization of mevalonate metabolism , 2021, eLife.

[17]  Yue Cao,et al.  An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions , 2021, Nature communications.

[18]  K. Teilum,et al.  Binding Revisited—Avidity in Cellular Function and Signaling , 2021, Frontiers in Molecular Biosciences.

[19]  S. Büttner,et al.  Remodelling of Nucleus-Vacuole Junctions During Metabolic and Proteostatic Stress , 2021, Contact (Thousand Oaks (Ventura County, Calif.)).

[20]  L. Berglund,et al.  Snd3 controls nucleus-vacuole junctions in response to glucose signaling. , 2021, Cell reports.

[21]  M. McNiven,et al.  Direct lysosome-based autophagy of lipid droplets in hepatocytes , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[22]  I. Boldogh,et al.  Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae , 2020, Autophagy.

[23]  Maria Bohnert Tether Me, Tether Me Not-Dynamic Organelle Contact Sites in Metabolic Rewiring. , 2020, Developmental cell.

[24]  D. Shin,et al.  Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders , 2020, Molecules and cells.

[25]  D. Klionsky,et al.  Vac8 determines phagophore assembly site vacuolar localization during nitrogen starvation-induced autophagy , 2020, Autophagy.

[26]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[27]  W. Prinz,et al.  The functional universe of membrane contact sites , 2019, Nature Reviews Molecular Cell Biology.

[28]  Robert V Farese,et al.  LDAF1 and Seipin Form a Lipid Droplet Assembly Complex. , 2019, Developmental cell.

[29]  Y. Jun,et al.  Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways , 2019, Autophagy.

[30]  Nektarios Tavernarakis,et al.  Emerging Roles of Lipophagy in Health and Disease , 2019, Front. Cell Dev. Biol..

[31]  A. Thiam,et al.  Lipid droplet–membrane contact sites – from protein binding to function , 2019, Journal of Cell Science.

[32]  R. Bartenschlager,et al.  Lipid droplet quantification based on iterative image processing[S] , 2019, Journal of Lipid Research.

[33]  György Hajnóczky,et al.  Coming together to define membrane contact sites , 2019, Nature Communications.

[34]  M. Schuldiner,et al.  Promethin Is a Conserved Seipin Partner Protein , 2019, Cells.

[35]  D. Nicastro,et al.  Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis , 2019, The Journal of cell biology.

[36]  C. Kraft,et al.  Vac8 spatially confines autophagosome formation at the vacuole in S. cerevisiae , 2019, Journal of Cell Science.

[37]  J. Olzmann,et al.  Dynamics and functions of lipid droplets , 2018, Nature Reviews Molecular Cell Biology.

[38]  Joshua E. Elias,et al.  Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors , 2018, Proceedings of the National Academy of Sciences.

[39]  X. Zhang,et al.  Classical and alternative roles for autophagy in lipid metabolism , 2018, Current opinion in lipidology.

[40]  M. Schuldiner,et al.  Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact , 2018, Nature Communications.

[41]  L. Pon,et al.  Lipid droplet autophagy during energy mobilization, lipid homeostasis and protein quality control. , 2018, Frontiers in bioscience.

[42]  M. Graef Lipid droplet‐mediated lipid and protein homeostasis in budding yeast , 2018, FEBS letters.

[43]  Robert V Farese,et al.  Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets. , 2018, Developmental cell.

[44]  M. Schuldiner,et al.  Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation , 2018, The Journal of cell biology.

[45]  Christer S. Ejsing,et al.  Regulation of lipid droplets by metabolically controlled Ldo isoforms , 2018, The Journal of cell biology.

[46]  H. Hariri,et al.  Lipid droplet biogenesis is spatially coordinated at ER–vacuole contacts under nutritional stress , 2018, EMBO reports.

[47]  Y. Maéda,et al.  Evidence for ESCRT- and clathrin-dependent microautophagy , 2017, The Journal of cell biology.

[48]  M. Schuldiner,et al.  A different kind of love - lipid droplet contact sites. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[49]  T. Fujimoto,et al.  Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole , 2017, eLife.

[50]  Y. Jun,et al.  Mechanistic insight into the nucleus–vacuole junction based on the Vac8p–Nvj1p crystal structure , 2017, Proceedings of the National Academy of Sciences.

[51]  J. Lippincott-Schwartz,et al.  AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation , 2017, eLife.

[52]  M. Schuldiner,et al.  A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. , 2016, Developmental cell.

[53]  W. Henne Organelle remodeling at membrane contact sites. , 2016, Journal of structural biology.

[54]  Robert V Farese,et al.  Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets. , 2016, Trends in cell biology.

[55]  S. Siniossoglou,et al.  Spatial distribution of lipid droplets during starvation: Implications for lipophagy , 2016, Communicative & integrative biology.

[56]  R. Chan,et al.  Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast. , 2015, Developmental cell.

[57]  G. Voeltz,et al.  Structure and function of ER membrane contact sites with other organelles , 2015, Nature Reviews Molecular Cell Biology.

[58]  S. Emr,et al.  Mdm1/Snx13 is a novel ER–endolysosomal interorganelle tethering protein , 2015, The Journal of cell biology.

[59]  Chao-Wen Wang,et al.  A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast , 2014, The Journal of cell biology.

[60]  C. Andréasson,et al.  A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination. , 2014, Protein expression and purification.

[61]  S. Kohlwein,et al.  Lipid droplet autophagy in the yeast Saccharomyces cerevisiae , 2014, Molecular biology of the cell.

[62]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[63]  Robert V Farese,et al.  Lipid droplets and cellular lipid metabolism. , 2012, Annual review of biochemistry.

[64]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[65]  P. Ljungdahl,et al.  The Prodomain of Ssy5 Protease Controls Receptor-Activated Proteolysis of Transcription Factor Stp1 , 2010, Molecular and Cellular Biology.

[66]  L. Partridge,et al.  Extending Healthy Life Span—From Yeast to Humans , 2010, Science.

[67]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[68]  C. Netherton,et al.  Rapid freeze‐substitution preserves membranes in high‐pressure frozen tissue culture cells , 2007, Journal of microscopy.

[69]  L. Pease,et al.  Gene splicing and mutagenesis by PCR-driven overlap extension , 2007, Nature Protocols.

[70]  D. Goldfarb,et al.  Nucleus-Vacuole Junctions and Piecemeal Microautophagy of the Nucleus in S. cerevisiae , 2007, Autophagy.

[71]  Jörg Urban,et al.  The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Michael Knop,et al.  A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes , 2004, Yeast.

[73]  G. Daum,et al.  Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae. , 2004, Biochimica et biophysica acta.

[74]  Natalie L. Catlett,et al.  Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole , 2003, Nature.

[75]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[76]  D. Goldfarb,et al.  Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. , 2000, Molecular biology of the cell.

[77]  D. Goldfarb,et al.  YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. , 1998, Journal of cell science.

[78]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[79]  Francesca Storici,et al.  The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. , 2006, Methods in enzymology.

[80]  D. Goldfarb,et al.  Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[81]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[82]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .