Sequences of Enumerative Geometry: Congruences and Asymptotics
暂无分享,去创建一个
[1] Laurent Manivel,et al. Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .
[2] D. R. Heath-Brown,et al. An Introduction to the Theory of Numbers, Sixth Edition , 2008 .
[3] Jan Stienstra,et al. On the Picard-Fuchs equation and the formal brauer group of certain ellipticK3-surfaces , 1985 .
[4] S. Yau,et al. Arithmetic properties of mirror map and quantum coupling , 1994, hep-th/9411234.
[5] S. Yau. A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1998 .
[6] Isaac Leroy Hines. Symmetric functions , 2021, Tau Functions and their Applications.
[7] Y. Moshe. The density of 0's in recurrence double sequences , 2003 .
[8] E. D. Giorgi. Selected Papers , 2006 .
[9] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[10] D. Zagier. Vassiliev invariants and a strange identity related to the Dedekind eta-function , 2001 .
[11] Serge Tabachnikov,et al. Arithmetical properties of binomial coefficients , 2007 .
[12] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[13] B. L. Waerden. Zur algebraischen Geometrie , 1937 .
[14] On some arithmetical properties of middle binomial coefficients , 1998 .
[15] Yossi Moshe. The distribution of elements in automatic double sequences , 2005, Discret. Math..
[16] M. Kontsevich,et al. Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .
[17] Xenia de la Ossa,et al. A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .
[18] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .