Mesozoic–Cenozoic multistage tectonic evolution of the Pamir: Detrital fission‐track constraints from the Tajik Basin

Knowledge of the tectonic history of the Pamir contributes to our understanding of both the evolution of collisional orogenic belts as well as factors controlling Central Asian aridification. It is, however, not easy to decipher the Mesozoic–Cenozoic tectonics of the Pamir due to extensive Neogene deformation in an orogen that remains largely understudied. This study reports detrital apatite and zircon fission‐track (FT) ages from both the eastern Tajik Basin sedimentary rocks and Pamir modern river sands. These FT data, supported by vitrinite reflectance and zircon and apatite U–Pb double dating, suggest that the majority of the FT ages are unreset and record exhumation stages of the Pamir, which has served as the source terrane of the Tajik Basin since the Cretaceous. Furthermore, we combine the new data with a compilation of published detrital apatite and zircon FT data from both the Tajik Basin sedimentary rocks and Pamir modern river sands, to explore the Mesozoic–Cenozoic tectonic history of Pamir. Deconvolved FT Peak Ages document two major Mesozoic exhumation events associated with the Late Triassic–Early Jurassic Cimmerian orogeny that reflects accretion of the Pamir terranes, as well as the Early–early Late Cretaceous deformation associated with the northward subduction of the Neo‐Tethys Ocean beneath Pamir. The compiled data also show significant Late Eocene–Neogene exhumation associated with the ongoing formation of the Pamir, which peaks at ca. 36, 25, 14 and 7 Ma.

[1]  T. Ehlers,et al.  Cenozoic Tectono‐Geomorphologic Evolution of the Pamir‐Tian Shan Convergence Zone: Evidence From Detrital Zircon U‐Pb Provenance Analyses , 2021, Tectonics.

[2]  Lin Li,et al.  Middle to late Miocene growth of the North Pamir , 2021, Basin Research.

[3]  Haibing Li,et al.  Sedimentary Provenance Changes Constrain the Eocene Initial Uplift of the Central Pamir, NW Tibetan Plateau , 2021, Frontiers in Earth Science.

[4]  L. Ratschbacher,et al.  The Hindu Kush slab break-off as revealed by deep structure and crustal deformation , 2021, Nature Communications.

[5]  P. DeCelles,et al.  Climate as the great equalizer of continental-scale erosion , 2021 .

[6]  Jie Chen,et al.  The Carboniferous Arc of the North Pamir , 2021 .

[7]  M. Stoica,et al.  Cretaceous Evolution of the Central Asian Proto‐Paratethys Sea: Tectonic, Eustatic, and Climatic Controls , 2020, Tectonics.

[8]  A. C. Robinson,et al.  Evidence for Late Triassic crustal suturing of the Central and Southern Pamir , 2020 .

[9]  Jimin Sun,et al.  Cenozoic tectonic rotations in different parts of the NE Pamir: implications for the evolution of the arcuate orogen , 2020, International Journal of Earth Sciences.

[10]  Hanlin Chen,et al.  Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir , 2020, Journal of Earth Science.

[11]  J. Brückner,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 3. Preorogenic to Synorogenic Retro‐foreland Basin Evolution in the Eastern Tajik Depression and Linkage to the Pamir Hinterland , 2020, Tectonics.

[12]  L. Ratschbacher,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 1. Structure, Kinematics, and Salt Tectonics in the Tajik Fold‐and‐Thrust Belt of the Western Foreland of the Pamir , 2020, Tectonics.

[13]  J. Khan,et al.  Tajik Basin and Southwestern Tian Shan, Northwestern India‐Asia Collision Zone: 2. Timing of Basin Inversion, Tian Shan Mountain Building, and Relation to Pamir‐Plateau Advance and Deep India‐Asia Indentation , 2020, Tectonics.

[14]  Fahu Chen,et al.  The role of the westerlies and orography in Asian hydroclimate since the late Oligocene , 2020, Geology.

[15]  J. Khan,et al.  The Alichur Dome, South Pamir, Western India–Asia Collisional Zone: Detailing the Neogene Shakhdara–Alichur Syn‐collisional Gneiss‐Dome Complex and Connection to Lithospheric Processes , 2020, Tectonics.

[16]  J. Ogg Geomagnetic Polarity Time Scale , 2020, Geologic Time Scale 2020.

[17]  E. Garzanti,et al.  Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin , 2019 .

[18]  Fahu Chen,et al.  Parathethys Last Gasp in Central Asia and Late Oligocene Accelerated Uplift of the Pamirs , 2019, Geophysical Research Letters.

[19]  P. DeCelles,et al.  The Tajik Basin: A composite record of sedimentary basin evolution in response to tectonics in the Pamir , 2019, Basin Research.

[20]  A. C. Robinson,et al.  Mesozoic evolution of the eastern Pamir , 2019, Lithosphere.

[21]  P. DeCelles,et al.  Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses , 2019, American Journal of Science.

[22]  G. Dupont‐Nivet,et al.  Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China): Sedimentologic and Magnetostratigraphic Analyses of the Aertashi Section , 2019, Tectonics.

[23]  P. Fitzgerald,et al.  Fission-Track Thermochronology and its Application to Geology , 2018, Springer Textbooks in Earth Sciences, Geography and Environment.

[24]  P. DeCelles,et al.  Structural setting and detrital zircon U–Pb geochronology of Triassic–Cenozoic strata in the eastern Central Pamir,Tajikistan , 2019 .

[25]  M. Danišík,et al.  The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan , 2018, Gondwana Research.

[26]  M. Searle,et al.  Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision , 2018, Special Publications.

[27]  C. Garzione,et al.  Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma , 2018, Geology.

[28]  A. C. Robinson,et al.  Cretaceous shortening and exhumation history of the South Pamir terrane , 2018 .

[29]  P. Vermeesch Statistics for Fission-Track Thermochronology , 2018, Fission-Track Thermochronology and its Application to Geology.

[30]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[31]  J. Chapman,et al.  Mesozoic to Cenozoic magmatic history of the Pamir , 2018 .

[32]  P. DeCelles,et al.  Intracontinental subduction beneath the Pamir Mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt , 2017 .

[33]  G. Dupont‐Nivet,et al.  Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence , 2017 .

[34]  T. Rittenour,et al.  Controls on erosion in the western Tarim Basin: Implications for the uplift of northwest Tibet and the Pamir , 2017 .

[35]  L. Ratschbacher,et al.  Building the Pamir‐Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust , 2017 .

[36]  E. Leven PERMIAN AND TRIASSIC OF THE RUSHAN-PSHART ZONE (PAMIR) , 2017 .

[37]  J. Khan,et al.  Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and rates , 2017 .

[38]  L. Ratschbacher,et al.  Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 1. Geometry and kinematics , 2017 .

[39]  O. Clausen,et al.  basin%Ro: A vitrinite reflectance model derived from basin and laboratory data , 2017 .

[40]  L. Ratschbacher,et al.  Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia) , 2016 .

[41]  M. Strecker,et al.  Uplift and growth of the northwest Pamir , 2015 .

[42]  P. Beek,et al.  Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen , 2015 .

[43]  J. Kley,et al.  Cenozoic evolution of the Pamir and Tien Shan mountains reflected in syntectonic deposits of the Tajik Basin , 2015, Special Publications.

[44]  R. Tada,et al.  Late Oligocene–early Miocene birth of the Taklimakan Desert , 2015, Proceedings of the National Academy of Sciences.

[45]  A. C. Robinson Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau , 2015 .

[46]  L. Ratschbacher,et al.  Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion , 2015 .

[47]  Organic petrology , 2015 .

[48]  G. Gehrels,et al.  Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir , 2014 .

[49]  G. Dupont‐Nivet,et al.  Oligocene clockwise rotations along the eastern Pamir: Tectonic and paleogeographic implications , 2014 .

[50]  C. Haberland,et al.  Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography , 2013 .

[51]  A. Zanchi,et al.  The Cimmerian geopuzzle: new data from South Pamir , 2013 .

[52]  L. Ratschbacher,et al.  Synchronous Oligocene–Miocene metamorphism of the Pamir and the north Himalaya driven by plate-scale dynamics , 2013 .

[53]  J. Khan,et al.  The giant Shakhdara migmatitic gneiss dome, Pamir, India‐Asia collision zone: 2. Timing of dome formation , 2013 .

[54]  C. Haberland,et al.  Seismic imaging of subducting continental lower crust beneath the Pamir , 2013 .

[55]  Jie Chen,et al.  Late Cenozoic extension and crustal doming in the India‐Eurasia collision zone: New thermochronologic constraints from the NE Chinese Pamir , 2013 .

[56]  P. Beek,et al.  Cenozoic thermo-tectonic evolution of the northeastern Pamir revealed by zircon and apatite fission-track thermochronology , 2013 .

[57]  Jie Chen,et al.  Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen , 2013 .

[58]  P. Beek,et al.  Focused Pliocene–Quaternary exhumation of the Eastern Pamir domes, western China , 2013 .

[59]  A. C. Robinson,et al.  Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir , 2012 .

[60]  F. Vanhaecke,et al.  Late Palaeozoic and Meso-Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multi-method thermochronology in the Trans-Alai, Turkestan-Alai segment and the southeastern Ferghana Basin , 2012 .

[61]  G. Gehrels,et al.  Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China) , 2012 .

[62]  G. Gehrels,et al.  Cenozoic deep crust in the Pamir , 2011 .

[63]  A. Zanchi,et al.  The geology of the Karakoram range, Pakistan: the new 1:100,000 geological map of Central-Western Karakoram , 2011 .

[64]  Jie Chen,et al.  Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis , 2011 .

[65]  S. Hynek,et al.  Exhumational history of the north central Pamir , 2010 .

[66]  G. Gehrels,et al.  Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry , 2008 .

[67]  GEOLOGICAL AND GEOPHYSICAL , 2006 .

[68]  P. Reiners,et al.  (U-Th)/(He-Pb) double dating of detrital zircons , 2005 .

[69]  T. Tagami Zircon Fission-Track Thermochronology and Applications to Fault Studies , 2005 .

[70]  R. Ketcham,et al.  Apatite Fission-Track Analysis , 2005 .

[71]  M. Bernet,et al.  Fission-track Analysis of Detrital Zircon , 2005 .

[72]  G. Ruiz,et al.  Detrital thermochronology – a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador , 2004 .

[73]  L. Ratschbacher,et al.  Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet , 2004 .

[74]  A. C. Robinson,et al.  Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China , 2004 .

[75]  M. Strecker,et al.  Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir‐Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo‐Eurasia collision , 2002 .

[76]  S. Graham,et al.  Uplift, exhumation, and deformation in the Chinese Tian Shan , 2001 .

[77]  R. Ketcham,et al.  Variability of apatite fission-track annealing kinetics: I. Experimental results , 1999 .

[78]  Richard A. Ketcham,et al.  Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales , 1999 .

[79]  M. Brandon,et al.  Exhumation history of orogenic highlands determined by detrital fission-track thermochronology , 1999, Geological Society, London, Special Publications.

[80]  Christopher J. Johnson,et al.  FISSION TRACK ANALYSIS AND ITS APPLICATIONS TO GEOLOGICAL PROBLEMS , 1998 .

[81]  P. Cobbold,et al.  Least squares restoration of Tertiary thrust sheets in map view, Tajik depression, central Asia , 1997 .

[82]  E. Sobel,et al.  Thrusting and exhumation around the margins of the western Tarim basin during the India‐Asia collision , 1997 .

[83]  H. Perroud,et al.  Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia) , 1994 .

[84]  H. Perroud,et al.  Paleomagnetism of Cretaceous red beds from Tadzhikistan and Cenozoic deformation due to India-Eurasia collision , 1994 .

[85]  Peter Molnar,et al.  Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir , 1993 .

[86]  J. Pozzi,et al.  Paleomagnetism in the Tajikistan: continental shortening of European margin in the Pamirs during Indian Eurasian collision , 1991 .

[87]  A. Burnham,et al.  Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics , 1990 .

[88]  R. Goldstein,et al.  Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer , 1990 .

[89]  Paul F. Green,et al.  Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales , 1989 .

[90]  R. Bustin Coal Petrology: Its Principles, Methods and Applications , 1985 .

[91]  A. Gleadow FISSION-TRACK DATING METHODS - WHAT ARE THE REAL ALTERNATIVES , 1981 .

[92]  R. Galbraith On statistical models for fission track counts , 1981 .