Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture

[1]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[2]  L. Robeson,et al.  Gas permeability characteristics of nitrile‐containing block and random copolymers , 1975 .

[3]  Kornelis Blok,et al.  Feasibility of polymer membranes for carbon dioxide recovery from flue gases , 1992 .

[4]  R. Behling,et al.  Preparation and characterization of thin-film zeolite–PDMS composite membranes☆ , 1992 .

[5]  William J. Koros,et al.  Membrane-based gas separation , 1993 .

[6]  Benny D. Freeman,et al.  Gas separation using polymer membranes: an overview , 1994 .

[7]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[8]  Jürgen Caro,et al.  Zeolite membranes – state of their development and perspective , 2000 .

[9]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[10]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[11]  R. Baker Future directions of membrane gas separation technology , 2002 .

[12]  W. Koros,et al.  Hybrid membrane materials comprising organic polymers with rigid dispersed phases , 2004 .

[13]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[14]  P. Dyson,et al.  Molecular Structure, Vibrational Spectra, and Hydrogen Bonding of the Ionic Liquid 1‐Ethyl‐3‐methyl‐1H‐imidazolium Tetrafluoroborate , 2004 .

[15]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[16]  D. Schiraldi,et al.  Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films , 2005 .

[17]  M. Radosz,et al.  Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. , 2005, Chemical communications.

[18]  S. Kulprathipanja,et al.  The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes , 2005 .

[19]  Young Gyu Kim,et al.  Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains , 2006 .

[20]  W. Nordhaus The "Stern Review" on the Economics of Climate Change , 2006 .

[21]  Hua Zhao,et al.  INNOVATIVE APPLICATIONS OF IONIC LIQUIDS AS “GREEN” ENGINEERING LIQUIDS , 2006 .

[22]  D. Gin,et al.  Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes , 2007 .

[23]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[24]  M. Toriida,et al.  The effects of chemical structure on gas transport properties of poly(aryl ether ketone) random copolymers , 2007 .

[25]  F. Hernández‐Fernández,et al.  A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids , 2007 .

[26]  Jason E. Bara,et al.  Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes , 2008 .

[27]  Michael D. Guiver,et al.  Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation , 2008 .

[28]  L. Robeson,et al.  The upper bound revisited , 2008 .

[29]  R. Noble,et al.  Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes , 2008 .

[30]  Jason E. Bara,et al.  Improving CO2 permeability in polymerized room‐temperature ionic liquid gas separation membranes through the formation of a solid composite with a room‐temperature ionic liquid , 2008 .

[31]  Benny D. Freeman,et al.  Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites , 2008 .

[32]  A. P. de los Ríos,et al.  Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability , 2009 .

[33]  Armin D. Ebner,et al.  State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries , 2009 .

[34]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[35]  A. Feldhoff,et al.  Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework , 2009 .

[36]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[37]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[38]  Jianwen Jiang,et al.  Density functional theory for adsorption of gas mixtures in metal-organic frameworks. , 2010, The journal of physical chemistry. B.

[39]  Qichao Zhao,et al.  Synthesis of copolyimides based on room temperature ionic liquid diamines , 2010 .

[40]  Youchang Xiao,et al.  Synthesis and characterization of poly (ethylene oxide) containing copolyimides for hydrogen purification , 2010 .

[41]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[42]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[43]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[44]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[45]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[46]  Hae‐Kwon Jeong,et al.  Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[47]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[48]  R. Noble,et al.  A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials , 2010 .

[49]  S. Nagase,et al.  CO2 separation membranes using ionic liquids in a Nafion matrix , 2010 .

[50]  A. Cheetham,et al.  Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks , 2010, Proceedings of the National Academy of Sciences.

[51]  Shiguo Zhang,et al.  The influence of the acidity of ionic liquids on catalysis. , 2010, ChemSusChem.

[52]  Faïçal Larachi,et al.  Ionic liquids for CO 2 captureDevelopment and progress , 2010 .

[53]  Gary A. Baker,et al.  Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation , 2010 .

[54]  L. J. Lozano,et al.  Recent advances in supported ionic liquid membrane technology , 2011 .

[55]  Mj Martin Tuinier,et al.  Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology , 2011 .

[56]  R. Noble,et al.  Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 parti , 2011 .

[57]  H. Strathmann,et al.  Introduction to Membrane Science and Technology , 2011 .

[58]  Pei Li,et al.  CO2 Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid)–Room Temperature Ionic Liquid Composite Membranes , 2011 .

[59]  Sheng Dai,et al.  Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion. , 2011, The journal of physical chemistry. B.

[60]  J. Caro,et al.  Are MOF membranes better in gas separation than those made of zeolites , 2011 .

[61]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[62]  Chao-Hsi Chen,et al.  Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect , 2011 .

[63]  D. Sholl,et al.  Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations , 2012 .

[64]  Peng Huang,et al.  Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. , 2012, Dalton transactions.

[65]  S. C. Kumbharkar,et al.  Polymeric ionic liquids (PILs): Effect of anion variation on their CO2 sorption , 2012 .

[66]  Ting Yang,et al.  Symmetric and Asymmetric Zeolitic Imidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) Nanocomposite Membranes for Hydrogen Purification at High Temperatures , 2012 .

[67]  Pei Li,et al.  PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas , 2012 .

[68]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[69]  Peta Ashworth,et al.  What's in store: lessons from implementing CCS , 2012 .

[70]  Donald R Paul,et al.  High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas , 2012 .

[71]  M. A. Alam,et al.  Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation , 2012 .

[72]  Ting Yang,et al.  Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols , 2012 .

[73]  M. Coleman,et al.  Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications , 2013 .