Natural abundance 13C spin-lattice (T1) relaxation time measurements are reported for unilamellar vesicles of 1,2-dipalmitoylphosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), in the liquid crystalline phase, at magnetic field strengths of 1.40, 1.87, 2.35, 4.23, 7.05, 8.45, and 11.7 tesla (resonance frequencies of 15.0, 20.0, 25.1, 45.3, 75.5, 90.5, and 126 MHz, respectively), and the results are compared to previous 2H T1 studies of multilamellar dispersions. For both the 13C and 2H T1 studies, a dramatic frequency dependence of the relaxation was observed. At superconducting magnetic field strengths (4.23-11.7 tesla), plots of the 13C T1(-1) relaxation rates as a function of acyl chain segment position clearly reveal the characteristic "plateau" signature of the liquid crystalline phase, as found previously from 2H NMR studies. The dependence of T1(1) on ordering, determined previously from 2H NMR, and the T1(-1) dependence on frequency, determined from both 13C and 2H NMR studies, suggest that a unified picture of the bilayer molecular dynamics can be provided by a simple relaxation law of the form T1(-1) approximately equal to A tau f + BS2C-H omega -1/2(0). In the above expression, A and B are constants, SC-H (= SC-D) is the bond segmental order parameter, and omega 0 is the nuclear Larmor frequency. The first (A) term includes contributions from fast, local segmental motions characterized by the effective correlation time tau f, whereas the second (B) term describes slower, collective fluctuations in the local ordering. The value of tau f approximately equal to 10(-11) sec, obtained by extrapolating T1(-1) to infinite frequency, suggests that the segmental microviscosity of the bilayer hydrocarbon region does not differ appreciably from that of the equivalent n-paraffinic liquids of similar chain length.