Enriching the Symmetry of Maxwell Equations through Unprecedented Magnetic Responses of Artificial Metamaterials and Their Revolutionary Applications

Abstract: The major issue regarding magnetic response in nature—“negative values for the permeability μ of material parameters, especially in terahertz or optical region” makes the electromagnetic properties of natural materials asymmetric. Recently, research in metamaterials has grown in significance because these artificial materials can demonstrate special and, indeed, extraordinary electromagnetic phenomena such as the inverse of Snell’s law and novel applications. A critical topic in metamaterials is the artificial negative magnetic response, which can be designed in the higher frequency regime (from microwave to optical range). Artificial magnetism illustrates new physics and new applications, which have been demonstrated over the past few years. In this review, we present recent developments in research on artificial magnetic metamaterials including split-ring resonator structures, sandwich structures, and high permittivity-based dielectric composites. Engineering applications such as invisibility cloaking, negative refractive index medium, and slowing light fall into this category. We also discuss the possibility that metamaterials can be suitable for realizing new and exotic electromagnetic properties.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  Swati Rawal,et al.  Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal. , 2009, Optics express.

[3]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[4]  M. Wegener,et al.  Single-slit split-ring resonators at optical frequencies: limits of size scaling. , 2006, Optics letters.

[5]  Cécile Jamois,et al.  Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures , 2006 .

[6]  G Dolling,et al.  Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. , 2005, Optics letters.

[7]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[8]  Ta-Jen Yen,et al.  Creating negative refractive identity via single-dielectric resonators. , 2009, Optics express.

[9]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[10]  Yujie J. Ding,et al.  "Rainbow" trapping and releasing at telecommunication wavelengths. , 2009, Physical review letters.

[11]  Ekmel Ozbay,et al.  A planar metamaterial: Polarization independent fishnet structure , 2008 .

[12]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Francisco Medina,et al.  A new 2D isotropic left‐handed metamaterial design: Theory and experiment , 2002 .

[14]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[15]  C. Soukoulis,et al.  Numerical studies of left-handed materials and arrays of split ring resonators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[17]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[18]  Lixin Ran,et al.  Experimental observation of left-handed behavior in an array of standard dielectric resonators. , 2007, Physical review letters.

[19]  Vladimir M. Shalaev,et al.  Optics: Beyond diffraction , 2007, Nature.

[20]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[21]  T. Yen,et al.  Experimental verification of standing-wave plasmonic resonances in split-ring resonators , 2008 .

[22]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[23]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[24]  Kwok,et al.  Energy-flux pattern in the goos-Hanchen effect , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[26]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[27]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[28]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[29]  Eleftherios N. Economou,et al.  Magnetic response of split ring resonators at terahertz frequencies , 2007 .

[30]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[31]  Y M Liu,et al.  Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. , 2006, Physical review letters.

[32]  S. M. Wang,et al.  Magnetic plasmon modes in periodic chains of nanosandwiches. , 2008, Optics express.

[33]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[34]  Srinivas Sridhar,et al.  Slow microwave waveguide made of negative permeability metamaterials , 2009 .

[35]  Gennady Shvets,et al.  Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. , 2004, Physical review letters.

[36]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[37]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[38]  M. Wegener,et al.  Model system for a one-dimensional magnetic photonic crystal. , 2006, Physical review letters.

[39]  Kun Song,et al.  Trapped rainbow effect in visible light left-handed heterostructures , 2009 .

[40]  Abul K. Azad,et al.  Active terahertz metamaterials , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[41]  Y. Kivshar,et al.  Tunable split-ring resonators for nonlinear negative-index metamaterials. , 2006, Optics express.

[42]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[43]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[44]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[45]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[46]  D. Timotijević,et al.  Guided modes in left-handed waveguides , 2008 .

[47]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[48]  Didier Lippens,et al.  An all-dielectric route for terahertz cloaking. , 2008, Optics express.

[49]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[50]  Eleftherios N. Economou,et al.  Left-handed metamaterials: detailed numerical studies of the transmission properties , 2005 .

[51]  O. Reynet,et al.  Voltage controlled metamaterial , 2004 .

[52]  A. Loidl,et al.  Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range. , 2007, Physical review letters.

[53]  I. Vendik,et al.  3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions , 2009 .

[54]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[55]  S. Rezende,et al.  Far-infrared laser study of magnetic polaritons in FeF2and Mn impurity mode in FeF2: Mn , 1981 .

[56]  Cécile Jamois,et al.  Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability , 2006 .

[57]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[58]  Ta-Jen Yen,et al.  A highly symmetric two-handed metamaterial spontaneously matching the wave impedance. , 2008, Optics express.

[59]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[60]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[61]  Carmine Vittoria,et al.  Simulations of ferrite-dielectric-wire composite negative index materials. , 2007, Physical review letters.

[62]  Yeshaiahu Fainman,et al.  Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites. , 2006, Optics express.

[63]  Olivier J. F. Martin,et al.  Efficient isotropic magnetic resonators , 2002 .

[64]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[65]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[66]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[67]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[68]  B Guizal,et al.  All-dielectric rod-type metamaterials at optical frequencies. , 2008, Physical review letters.

[69]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[70]  C. Powell,et al.  Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium , 1960 .

[71]  D. Mills,et al.  Polaritons: the electromagnetic modes of media , 1974 .

[72]  Rolf Schuhmann,et al.  Ab initio numerical simulation of left-handed metamaterials: Comparison of calculations and experiments , 2001 .

[73]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[74]  N. Seddon,et al.  Observation of the Inverse Doppler Effect , 2003, Science.

[75]  Nikolay I. Zheludev,et al.  Mirror that does not change the phase of reflected waves , 2006 .

[76]  M. Kafesaki,et al.  Electric coupling to the magnetic resonance of split ring resonators , 2004 .

[77]  J. Stewart Aitchison,et al.  Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies , 2005 .

[78]  Carsten Rockstuhl,et al.  Resonances of split-ring resonator metamaterials in the near infrared , 2006 .

[79]  Sauér,et al.  Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2. , 1986, Physical review letters.

[80]  John B. Pendry,et al.  Photonic band-gap effects and magnetic activity in dielectric composites , 2002 .

[81]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[82]  J. Ganne,et al.  Experimental measurement of negative index in an all-dielectric metamaterial , 2009 .

[83]  Dmitry S. Kozlov,et al.  3D Metamaterial Based on a Regular Array of Resonant Dielectric Inclusions , 2009 .

[84]  Alasdair W. Clark,et al.  Multiple plasmon resonances from gold nanostructures , 2007 .

[85]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[86]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[87]  O.G. Vendik,et al.  Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix , 2004, 34th European Microwave Conference, 2004..

[88]  Roberto Merlin,et al.  Analytical solution of the almost-perfect-lens problem , 2004 .

[89]  Peng Wang,et al.  Fabrication of negative index materials using dielectric and metallic composite route , 2008 .

[90]  Shuang Zhang,et al.  Near-infrared double negative metamaterials. , 2005, Optics express.

[91]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[92]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[93]  Basudev Lahiri,et al.  Asymmetric split ring resonators for optical sensing of organic materials. , 2009, Optics express.

[94]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[95]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[96]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[97]  Y. Meng,et al.  Tunable negative permeability in an isotropic dielectric composite , 2008 .

[98]  J. Kong,et al.  Cerenkov radiation in materials with negative permittivity and permeability. , 2003, Optics express.

[99]  P. Berman,et al.  Goos-Hänchen shift in negatively refractive media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  N I Zheludev,et al.  Planar electromagnetic metamaterial with a fish scale structure. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[102]  Hossein Mosallaei,et al.  Physical configuration and performance modeling of all-dielectric metamaterials , 2008 .

[103]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[104]  Steven G. Johnson,et al.  Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers. , 2009, Optics express.

[105]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[106]  Lai Hm,et al.  Energy-flux pattern in the goos-Hanchen effect , 2000 .

[107]  Thomas Taubner,et al.  Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. , 2007, Physical review letters.

[108]  David R. Smith,et al.  Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability , 2005 .

[109]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[110]  R. Merlin Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism , 2009, Proceedings of the National Academy of Sciences.

[111]  Carsten Rockstuhl,et al.  On the reinterpretation of resonances in split-ring-resonators at normal incidence. , 2006, Optics express.

[112]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[113]  J. Bonache,et al.  Babinet principle applied to the design of metasurfaces and metamaterials. , 2004, Physical review letters.

[114]  David R. Smith,et al.  Modulating and tuning the response of metamaterials at the unit cell level. , 2007, Optics express.

[115]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[116]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  D. Larkman,et al.  Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. , 2001, Science.

[118]  Guy Bouchitté,et al.  Theory of mesoscopic magnetism in photonic crystals. , 2004, Physical review letters.