Cosmology in Mirror Twin Higgs and neutrino masses

A bstractWe explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

[1]  M. Farina,et al.  Twin mechanism for baryon and dark matter asymmetries , 2016 .

[2]  P. Fayet Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions , 1977 .

[3]  R. D’Agnolo,et al.  Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom. , 2016, Physical review letters.

[4]  Pietro Longhi,et al.  The vector-like twin Higgs , 2016, 1601.07181.

[5]  M. P. Casado,et al.  Measurement of the tt¯W$$ t\overline{t}W $$ and tt¯Z$$ t\overline{t}Z $$ production cross sections in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015 .

[6]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[7]  Jesse Thaler,et al.  The dark top , 2008, 0808.1290.

[8]  Csaba Csaki,et al.  Searching for displaced Higgs boson decays , 2015, 1508.01522.

[9]  Gustavo Burdman,et al.  Colorless top partners, a 125 GeV Higgs boson, and the limits on naturalness , 2014, 1411.3310.

[10]  Yasunori Nomura,et al.  Natural Little Hierarchy from Partially Goldstone Twin Higgs , 2005, hep-ph/0510273.

[11]  Pietro Longhi,et al.  Neutral naturalness from orbifold Higgs models. , 2014, Physical review letters.

[12]  L. Hall,et al.  Minimal mirror twin Higgs , 2016, 1609.05589.

[13]  J. March-Russell,et al.  Twin Higgs WIMP Dark Matter , 2015, 1505.07109.

[14]  M. Geller,et al.  Holographic twin Higgs model. , 2014, Physical review letters.

[15]  Nathaniel Craig,et al.  Naturalness in the dark at the LHC , 2015, Journal of High Energy Physics.

[16]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[17]  John Terning,et al.  A Quirky Little Higgs Model , 2008, 0812.0843.

[18]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[19]  J. March-Russell,et al.  Twin Higgs Asymmetric Dark Matter. , 2015, Physical review letters.

[20]  M. Farina Asymmetric twin Dark Matter , 2015, 1506.03520.

[21]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[22]  Yuhsin Tsai,et al.  Reconciling large- and small-scale structure in Twin Higgs models , 2016, 1611.05879.

[23]  C. Csáki,et al.  The flavor of the Composite Twin Higgs , 2015, 1512.03427.

[24]  L. Hall,et al.  Supersymmetric twin Higgs mechanism , 2007 .

[25]  O. Lahav,et al.  Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck measurements , 2009, 0910.4714.

[26]  Mirror World at the Large Hadron Collider , 2005, hep-ph/0509242.

[27]  David Curtin,et al.  Discovering uncolored naturalness in exotic Higgs decays , 2015, 1506.06141.

[28]  Arthur Kosowsky The Atacama Cosmology Telescope , 2003 .

[29]  J. T. Childers,et al.  Time-dependent angular analysis of the decay $ B_s^0\to {J \left/ {{\psi \phi }} \right.} $ and extraction of ΔΓs and the CP-violating weak phase ϕs by ATLAS , 2012 .

[30]  I. Tamborra,et al.  Thermalisation of light sterile neutrinos in the early universe , 2012, 1204.5861.

[31]  Pietro Longhi,et al.  The Orbifold Higgs , 2014, 1411.7393.

[32]  G. Altarelli,et al.  Repressing anarchy in neutrino mass textures , 2012, 1207.0587.

[33]  R. Rattazzi,et al.  The composite twin Higgs scenario , 2015, 1501.07803.

[34]  T. Grégoire,et al.  The spontaneous ℤ2$$ {\mathbb{Z}}_2 $$ breaking Twin Higgs , 2015, 1510.06069.

[35]  Savas Dimopoulos,et al.  Softly Broken Supersymmetry and SU(5) , 1981 .

[36]  Gustavo Burdman,et al.  Folded supersymmetry and the LEP paradox , 2006, hep-ph/0609152.

[37]  R. Harnik,et al.  Tadpole-induced electroweak symmetry breaking and pNGB Higgs models , 2016, 1603.03772.

[38]  L. Hall,et al.  A Supersymmetric Twin Higgs , 2006, hep-ph/0604076.

[39]  G. Burdman,et al.  Colorless Top Partners , a 125 GeV Higgs , and the Limits on Naturalness , 2016 .

[40]  Robert Foot,et al.  POSSIBLE CONSEQUENCES OF PARITY CONSERVATION , 1992 .

[41]  J. Chou,et al.  New Detectors to Explore the Lifetime Frontier , 2016, 1606.06298.

[42]  Adam Falkowski,et al.  Twin SUSY , 2006, hep-ph/0604066.

[43]  Howard Georgi,et al.  Electroweak symmetry breaking from dimensional deconstruction , 2001, hep-ph/0105239.

[44]  Roni Harnik,et al.  Natural electroweak breaking from a mirror symmetry. , 2006, Physical review letters.

[45]  T. Grégoire,et al.  The spontaneous ℤ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{Z}}_2 $$\end{document} breaking Twin Higgs , 2016, Journal of High Energy Physics.

[46]  D. Robinson,et al.  Gamma-rays from dark showers with twin Higgs models , 2016, 1601.07556.

[47]  Daniel Baumann,et al.  Phases of new physics in the CMB , 2015, 1508.06342.

[48]  B. Batell,et al.  Neutrino Masses from Neutral Top Partners , 2015, 1504.04016.

[49]  N. Craig,et al.  The fraternal WIMP miracle , 2015, 1505.07113.

[50]  N. Craig,et al.  Doubling down on naturalness with a supersymmetric twin Higgs , 2013, 1312.1341.

[51]  Jiang-Hao Yu A tale of twin Higgs: natural twin two Higgs doublet models , 2016 .

[52]  I. A. Monroy,et al.  First measurement of the CP-violating phase ϕsdd¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_s^{d\overline , 2017, Journal of High Energy Physics.

[53]  Lian-tao Wang,et al.  Twin Higgs mechanism and a composite Higgs boson , 2015, 1501.07890.

[54]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000 , 2014, 1405.5524.

[55]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[56]  Robert Foot,et al.  A model with fundamental improper spacetime symmetries , 1991 .