Mitigation of Alfvénic activity by 3D magnetic perturbations on NSTX

Observations on the National Spherical Torus Experiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of toroidal Alfven eigenmodes (TAE) and global Alfven eigenmodes (GAE) in response to pulsed n = 3 non-resonant fields. From full-orbit following Monte Carlo simulations with the one- and two-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. The results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.

[1]  R. White,et al.  Confinement of high energy trapped particles in tokamaks , 1981 .

[2]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[3]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[4]  Chio-Zong Cheng,et al.  Kinetic extensions of magnetohydrodynamics for axisymmetric toroidal plasmas , 1992 .

[5]  W. Kerner,et al.  Stability of global Alfven waves (TAE, EAE) in JET tritium discharges , 1994 .

[6]  T. Petrie,et al.  Loss of energetic beam ions during TAE instabilities , 1993 .

[7]  G. Fu,et al.  Toroidal Alfven eigenmode-induced ripple trapping , 1995 .

[8]  Chio Cheng,et al.  Alfven cyclotron instability and ion cyclotron emission , 1995 .

[9]  M. G. Bell,et al.  Simulations of alpha parameters in a TFTR DT supershot with high fusion power , 1995 .

[10]  Berk,et al.  Nonlinear dynamics of a driven mode near marginal stability. , 1996, Physical review letters.

[11]  T. Oikawa,et al.  Systematic study of toroidicity-induced Alfvén eigenmodes at low-q discharges in JT-60U , 1998 .

[12]  T. Ozeki,et al.  Frequency Chirping of Core-Localized Toroidicity-Induced Alfvén Eigenmodes and their Coupling to Global Alfvén Eigenmodes , 1999 .

[13]  Bell,et al.  Nature of monster sawteeth and their relationship to Alfven instabilities in tokamaks , 2000, Physical review letters.

[14]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[15]  R. Nazikian,et al.  Magnetic safety factor profile before and after sawtooth crashes investigated with toroidicity and ellipticity induced Alfvén eigenmodes , 2001 .

[16]  E. Belova,et al.  Compressional Alfvén eigenmode instability in NSTX , 2002 .

[17]  Donald A. Spong,et al.  Shear Alfvén continua in stellarators , 2003 .

[18]  E. Belova,et al.  Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas , 2003 .

[19]  R. E. Bell,et al.  Operation of the NSTX Thomson scattering system , 2002 .

[20]  M. Mauel,et al.  Observation of nonlinear frequency-sweeping suppression with rf diffusion. , 2003, Physical review letters.

[21]  M. Mauel,et al.  Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields , 2003 .

[22]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[23]  R. Harvey,et al.  Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment , 2006 .

[24]  T. Rhodes,et al.  Reversed shear Alfvén eigenmode stabilization by localized electron cyclotron heating , 2007 .

[25]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[26]  K. Burrell,et al.  Central flattening of the fast-ion profile in reversed-shear DIII-D discharges , 2008 .

[27]  W. W. Heidbrink,et al.  Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas , 2008 .

[28]  R. Bell,et al.  Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment , 2009 .

[29]  J. Breslau,et al.  Some properties of the M3D-C1 form of the three-dimensional magnetohydrodynamics equations , 2009 .

[30]  K. Tritz,et al.  Modeling fast-ion transport during toroidal Alfvén eigenmode avalanches in National Spherical Torus Experiment , 2009 .

[31]  Stephen C. Jardin,et al.  Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states , 2009, J. Comput. Phys..

[32]  Z. Gao Plasma shaping effects on the geodesic acoustic mode in the large orbit drift width limit , 2010 .

[33]  T E Evans,et al.  On demand triggering of edge localized instabilities using external nonaxisymmetric magnetic perturbations in toroidal plasmas. , 2010, Physical review letters.

[34]  K. Tritz,et al.  High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX , 2011 .

[35]  S. Sharapov,et al.  Major minority: energetic particles in fusion plasmas , 2011 .

[36]  J. Manickam,et al.  The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment , 2012 .

[37]  A. Diallo,et al.  Radial resolution enhancement of the NSTX Thomson scattering diagnostic. , 2012, The Review of scientific instruments.

[38]  A. Diallo,et al.  Prospects for the Thomson scattering system on NSTX-Upgrade. , 2012, The Review of scientific instruments.

[39]  N. Ferraro Calculations of two-fluid linear response to non-axisymmetric fields in tokamaksa) , 2012 .

[40]  R. Budny,et al.  A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .

[41]  Á. Cappa,et al.  Mitigation of NBI-driven Alfvén eigenmodes by electron cyclotron heating in the TJ-II stellarator , 2013 .

[42]  T. Lunt,et al.  Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks , 2013 .

[43]  M. Podestà,et al.  Mitigation of Alfvén activity in a tokamak by externally applied static 3D fields. , 2013, Physical review letters.

[44]  R. Bell,et al.  Fast-ion energy loss during TAE avalanches in the National Spherical Torus Experiment , 2013 .

[45]  K. Toi,et al.  Energetic particle physics in fusion research in preparation for burning plasma experiments , 2014 .

[46]  N. Bertelli,et al.  Suppression of energetic particle driven instabilities with HHFW heating , 2014 .

[47]  L. Lao,et al.  Fast ion transport during applied 3D magnetic perturbations on DIII-D , 2015 .

[48]  W. A. Cooper,et al.  Hybrid guiding-centre/full-orbit simulations in non-axisymmetric magnetic geometry exploiting general criterion for guiding-centre accuracy , 2014, 1412.5464.

[49]  Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria , 2015 .

[50]  A. Boozer,et al.  Numerical optimization of three-dimensional coils for NSTX-U , 2015 .