Parametric Lyapunov functions for uncertain systems: the multiplier approach

In this chapter, we propose to use a parametric multiplier approach to deriving parametric Lyapunov functions for robust stability analysis of linear systems involving uncertain parameters. This new approach generalizes the traditional multiplier approach used in the absolute stability literature where the multiplier is independent of the uncertain parameters. Our main result provides a general framework for studying multiaffine Lyapunov functions. We show that these Lyapunov functions can be found using linear matrix inequality (LMI) techniques. Some known results on parametric Lyapunov functions are shown to be our special cases.

[1]  P. Parks A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  R. Saeks,et al.  The analysis of feedback systems , 1972 .

[3]  Brian D. O. Anderson,et al.  Robust strict positive realness: characterization and construction , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[4]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 2 , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  J. How,et al.  Connections between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty , 1993, 1993 American Control Conference.

[6]  Brian D. O. Anderson,et al.  Lyapunov functions for uncertain systems with applications to the stability of time varying systems , 1994 .

[7]  D. Bernstein,et al.  The scaled Popov criterion and bounds for the real structured singular value , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[8]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[9]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[10]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .