SEU critical charge and sensitive area in a submicron CMOS technology

This work presents SEU phenomena in advanced SRAM memory cells. Using mixed-mode simulation, the effects of scaling on the notions of sensitive area and critical charge is shown. Specifically, we quantify the influence of parasitic bipolar action in cells fabricated in a submicron technology.

[1]  J. S. Browning,et al.  An SEU Tolerant Memory Cell Derived from Fundamental Studies of SEU Mechanisms in SRAM , 1987, IEEE Transactions on Nuclear Science.

[2]  John Choma,et al.  Mixed-mode PISCES-SPICE coupled circuit and device solver , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  L.W. Massengill,et al.  Single-event charge enhancement in SOI devices , 1990, IEEE Electron Device Letters.

[4]  R. Ecoffet,et al.  Observations Of Single-event Upset And Multiple-bit Upset In Non-hardened High-density SRAMs In The TOPEX/ Poseidon Orbit , 1993, 1993 IEEE Radiation Effects Data Workshop.

[5]  Lloyd W. Massengill,et al.  Effects of process parameter distributions and ion strike locations on SEU cross-section data (CMOS SRAMs) , 1993 .

[6]  R. Velazco,et al.  Design of SEU-hardened CMOS memory cells: the HIT cell , 1993, RADECS 93. Second European Conference on Radiation and its Effects on Components and Systems (Cat. No.93TH0616-3).

[7]  Lloyd W. Massengill,et al.  Single-event-induced charge collection and direct channel conduction in submicron MOSFETs , 1994 .

[8]  F. W. Sexton,et al.  Critical charge concepts for CMOS SRAMs , 1995 .

[9]  Marty R. Shaneyfelt,et al.  Impact of technology trends on SEU in CMOS SRAMs , 1996 .

[10]  G. R. Srinivasan Modeling the cosmic-ray-induced soft-error rate in integrated circuits: An overview , 1996, IBM J. Res. Dev..

[11]  T. Calin,et al.  Upset hardened memory design for submicron CMOS technology , 1996 .

[12]  E. Normand Single event upset at ground level , 1996 .

[13]  Paul E. Dodd,et al.  Device simulation of charge collection and single-event upset , 1996 .