Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems

We study the boundary control of solutions of the Helmholtz and Maxwell equations to enforce local non-zero constraints. These constraints may represent the local absence of nodal or critical points, or that certain functionals depending on the solutions of the PDE do not vanish locally inside the domain. Suitable boundary conditions are classically determined by using complex geometric optics solutions. This work focuses on an alternative approach to this issue based on the use of multiple frequencies. Simple boundary conditions and a finite number of frequencies are explicitly constructed independently of the coefficients of the PDE so that the corresponding solutions satisfy the required constraints. This theory finds applications in several hybrid imaging modalities: some examples are discussed.

[1]  Inverse problem of electro-seismic conversion , 2013, 1303.2135.

[2]  Peter Kuchment,et al.  Stabilizing inverse problems by internal data , 2011, 1110.1819.

[3]  Yves Capdeboscq On a counter-example to quantitative Jacobian bounds , 2015 .

[4]  Boundary control of elliptic solutions to enforce local constraints , 2012, 1210.4110.

[5]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[6]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[7]  M. Giaquinta,et al.  An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs , 2005 .

[8]  Guillaume Bal,et al.  Hybrid inverse problems and internal functionals , 2011, 1110.4733.

[9]  G. Bal Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.

[10]  Yves Capdeboscq,et al.  Elliptic Regularity Theory Applied to Time Harmonic Anisotropic Maxwell's Equations with Less than Lipschitz Complex Coefficients , 2013, SIAM J. Math. Anal..

[11]  Faouzi Triki,et al.  Uniqueness and stability for the inverse medium problem with internal data , 2010 .

[12]  G. Alessandrini,et al.  Quantitative estimates on Jacobians for hybrid inverse problems , 2015, 1501.03005.

[13]  On local non-zero constraints in PDE with analytic coefficients , 2015, 1501.01449.

[14]  Graeme W. Milton,et al.  Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity , 2004 .

[15]  G. Alberti On multiple frequency power density measurements , 2013, 1301.1508.

[16]  G. Alessandrini The length of level lines of solutions of elliptic equations in the plane , 1988 .

[17]  Eung Je Woo,et al.  Electrical tissue property imaging using MRI at dc and Larmor frequency , 2012 .

[18]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[19]  G. Alessandrini Global stability for a coupled physics inverse problem , 2014, 1404.1275.

[20]  Habib Ammari,et al.  Admittivity imaging from multi-frequency micro-electrical impedance tomography , 2014, 1403.5708.

[21]  Angus E. Taylor Analytic functions in general analysis , 1937 .

[22]  David Colton,et al.  The uniqueness of a solution to an inverse scattering problem for electromagnetic waves , 1992 .

[23]  Guillaume Bal,et al.  Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.

[24]  Eung Je Woo,et al.  Magnetic Resonance Electrical Impedance Tomography (MREIT) , 2011, SIAM Rev..

[25]  K. Schmüdgen Unbounded Self-adjoint Operators on Hilbert Space , 2012 .

[26]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[27]  M. Siegfried Lower Bounds for the Modulus of Analytic Functions , 1990 .

[28]  G. Bal,et al.  Hybrid inverse problems for a system of Maxwell’s equations , 2013, 1308.5439.

[29]  H. Ammari,et al.  Multi-frequency acousto-electromagnetic tomography , 2014, 1410.4119.

[30]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[31]  Patricia Bauman,et al.  Univalent solutions of an elliptic system of partial differential equations arising in homogenization , 2001 .

[32]  Habib Ammari,et al.  Microwave Imaging by Elastic Deformation , 2011, SIAM J. Appl. Math..

[33]  G. Alberti,et al.  À propos de certains problèmes inverses hybrides , 2013 .

[34]  G. Alberti On multiple frequency power density measurements II. The full Maxwell's equations , 2013, 1311.7603.

[35]  Josselin Garnier,et al.  Quantitative thermo-acoustic imaging: An exact reconstruction formula , 2012, 1201.0619.

[36]  Yves Capdeboscq,et al.  On local constraints and regularity of PDE in electromagnetics. Applications to hybrid imaging inverse problems , 2014 .

[37]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[38]  G. Alberti A version of the Rad\'o-Kneser-Choquet theorem for solutions of the Helmholtz equation in 3D , 2015 .

[39]  O. Scherzer,et al.  Hybrid tomography for conductivity imaging , 2011, 1112.2958.

[40]  Yuan Xu,et al.  Difference frequency magneto-acousto-electrical tomography (DF-MAET): application of ultrasound-induced radiation force to imaging electrical current density , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  G. Alessandrini,et al.  Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions , 1994 .

[42]  G. Bal,et al.  Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields , 2013, 1308.5872.

[43]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .

[44]  G. Bal,et al.  Inverse diffusion from knowledge of power densities , 2011, 1110.4577.

[45]  Otared Kavian,et al.  Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .