A class of linear codes with good parameters from algebraic curves

A class of linear codes with good parameters is constructed in this correspondence. It turns out that linear codes of this class are subcodes of the subfield subcodes of Goppa's geometry codes. In particular, we find 61 improvements on Brouwer's table based on our codes.

[1]  W. Waterhouse,et al.  Abelian varieties over finite fields , 1969 .

[2]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[3]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[4]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[5]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[6]  H. Stichtenoth Self-dual Goppa codes , 1988 .

[7]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[8]  Henning Stichtenoth,et al.  A note on Hermitian codes over GF(q2) , 1988, IEEE Trans. Inf. Theory.

[9]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[10]  S. G. Vladut,et al.  Algebraic-Geometric Codes , 1991 .

[11]  Ian F. Blake,et al.  Hermitian codes as generalized Reed-Solomon codes , 1992, Des. Codes Cryptogr..

[12]  Yair Be'ery,et al.  Bounds on the trellis size of linear block codes , 1993, IEEE Trans. Inf. Theory.

[13]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[14]  Shu Lin,et al.  On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes , 1993, IEEE Trans. Inf. Theory.

[15]  Shu Lin,et al.  On complexity of trellis structure of linear block codes , 1993, IEEE Trans. Inf. Theory.

[16]  Carlos Munuera,et al.  On the generalized Hamming weights of geometric-Goppa codes , 1994, IEEE Trans. Inf. Theory.

[17]  Alexander Vardy,et al.  Maximum-Likelihood Soft Decision Decoding of Bch Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.

[18]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[19]  Frank R. Kschischang,et al.  On the trellis structure of block codes , 1994, IEEE Trans. Inf. Theory.

[20]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[21]  Yair Be'ery,et al.  The twisted squaring construction, trellis complexity, and generalized weights of BCH and QR codes , 1996, IEEE Trans. Inf. Theory.

[22]  H. Niederreiter,et al.  Towers of Global Function Fields with Asymptotically Many Rational Places and an Improvement on the Gilbert ‐ Varshamov Bound , 1998 .

[23]  Kwok-Yan Lam,et al.  Constructions of Algebraic-Geometry Codes , 1999, IEEE Trans. Inf. Theory.

[24]  Henning Stichtenoth,et al.  Constructing codes from algebraic curves , 1999, IEEE Trans. Inf. Theory.

[25]  Harald Niederreiter,et al.  A New Construction of Algebraic Geometry Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[26]  Chaoping Xing,et al.  A generalization of algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[27]  Carlos Munuera,et al.  The Second and Third Generalized Hamming Weights of Hermitian Codes , 1999, IEEE Trans. Inf. Theory.

[28]  Chaoping Xing,et al.  A class of linear codes with good parameters , 2000, IEEE Trans. Inf. Theory.

[29]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .