Nanotechnology and Nanofabrication Applications in Chemical Sensing

[1]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[2]  M. Tietjen,et al.  Salmonellae and food safety. , 1995, Critical reviews in microbiology.

[3]  H. Clarke The Contamination of food , 1992 .

[4]  Lauro T. Kubota,et al.  Review of the use of biosensors as analytical tools in the food and drink industries , 2002 .

[5]  X. W. Sun,et al.  Zinc oxide nanocomb biosensor for glucose detection , 2006 .

[6]  Y. Chai,et al.  A glucose biosensor based on chitosan-Prussian blue-multiwall carbon nanotubes-hollow PtCo nanochains formed by one-step electrodeposition. , 2011, Colloids and surfaces. B, Biointerfaces.

[7]  Magnus Willander,et al.  The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces , 2009, Sensors.

[8]  Richard P. Buck,et al.  Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994) , 1994 .

[9]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[10]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Christopher J. L. Murray,et al.  Tuberculosis: Commentary on a Reemergent Killer , 1992, Science.

[12]  Leon A Terry,et al.  The application of biosensors to fresh produce and the wider food industry. , 2005, Journal of agricultural and food chemistry.

[13]  K. Woodward ANTIBIOTICS AND DRUGS | Uses in Food Production , 2003 .

[14]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[15]  Paula Gould,et al.  Nanoparticles probe biosystems , 2004 .

[16]  Nitin Kumar,et al.  Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays , 2006 .

[17]  C. Fernández-Sánchez,et al.  Colloidal gold as an electrochemical label of streptavidin-biotin interaction. , 2000, Biosensors & bioelectronics.

[18]  A. Erdem,et al.  Rigid carbon composites: a new transducing material for label-free electrochemical genosensing , 2004 .

[19]  Magnus Willander,et al.  A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire , 2010 .

[20]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[21]  Valérie Gaudin,et al.  Screening of penicillin residues in milk by a surface plasmon resonance-based biosensor assay: comparison of chemical and enzymatic sample pre-treatment , 2001 .

[22]  Alessandra Bonanni,et al.  Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes , 2006 .

[23]  Ihab Abdel-Hamid,et al.  Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria , 2000 .

[24]  Laura M. Lechuga,et al.  Real-time detection of chlorpyrifos at part per trillion levels in ground, surface and drinking water samples by a portable surface plasmon resonance immunosensor , 2006 .

[25]  S. Hernández,et al.  In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. , 2007, Biosensors & bioelectronics.

[26]  Magnus Willander,et al.  Zinc oxide nanorod for intracellular pH sensing , 2006 .

[27]  L. Kubota,et al.  Potentiometric biosensor for l-ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene–vinylacetate membrane , 1999 .

[28]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[29]  P. Hammer,et al.  Comparison of Biosensor, Microbiological, Immunochemical, and Physical Methods for Detection of Sulfamethazine Residues in Raw Milk. , 1996, Journal of food protection.

[30]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[31]  D. Nikolelis,et al.  Stabilized lipid film based biosensor for atenolol. , 2002, Biosensors & bioelectronics.

[32]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[33]  J. Chou,et al.  Development of a Disposable All-Solid-State Ascorbic Acid Biosensor and Miniaturized Reference Electrode Fabricated on Single Substrate , 2008, IEEE Sensors Journal.

[34]  Zhong Lin Wang Nanostructures of zinc oxide , 2004 .

[35]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[36]  Jones Ml,et al.  Noncooperativity of biotin binding to tetrameric streptavidin. , 1995 .

[37]  B. D. Malhotra,et al.  Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film , 2007 .

[38]  B. Danielsson,et al.  Intracellular K$^+$ Determination With a Potentiometric Microelectrode Based on ZnO Nanowires , 2011, IEEE Transactions on Nanotechnology.

[39]  F. Chu IMMUNOASSAYS | Radioimmunoassay and Enzyme Immunoassay , 2003 .

[40]  Salvador Alegret,et al.  Magneto immunoseparation of pathogenic bacteria and electrochemical magneto genosensing of the double-tagged amplicon. , 2009, Analytical chemistry.

[41]  M. Willander,et al.  Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein , 2012 .

[42]  G. Hicks,et al.  The Enzyme Electrode , 1967, Nature.

[43]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Michael T. Carter,et al.  Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine , 1989 .

[45]  C. Heggum LABELING OF DAIRY PRODUCTS , 2011 .

[46]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[47]  J Y D'Aoust,et al.  Salmonella and the international food trade. , 1994, International journal of food microbiology.

[48]  E. Paleček,et al.  Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid , 1960, Nature.

[49]  C. Ozkan,et al.  Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. , 2007, Cancer research.

[50]  Antje J Baeumner,et al.  Biosensors for environmental pollutants and food contaminants , 2003, Analytical and bioanalytical chemistry.

[51]  Michael Keusgen,et al.  Detection of Salmonella by Surface Plasmon Resonance , 2007, Sensors (Basel, Switzerland).

[52]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[53]  Lars Samuelson,et al.  Few-Electron Quantum Dots in Nanowires , 2004 .

[54]  A. Gehring,et al.  Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium. , 1996, Journal of immunological methods.

[55]  E. Lai,et al.  Surface plasmon resonance-based immunoassays. , 2000, Methods.

[56]  Cengiz S. Ozkan,et al.  Effects of Carbon Nanotubes on Photoluminescence Properties of Quantum Dots , 2008 .

[57]  M. Isabel Pividori,et al.  Electrochemical Genosensing Based on Rigid Carbon Composites. A Review , 2005 .

[58]  M. Delwiche,et al.  Towards Q-PCR of pathogenic bacteria with improved electrochemical double-tagged genosensing detection. , 2008, Biosensors & bioelectronics.

[59]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[60]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004 .

[61]  Willem Haasnoot,et al.  Application of a multi-sulfonamide biosensor immunoassay for the detection of sulfadiazine and sulfamethoxazole residues in broiler serum and its use as a predictor of the levels in edible tissue , 2005 .

[62]  Michael C. McAlpine,et al.  Scalable Interconnection and Integration of Nanowire Devices without Registration , 2004 .

[63]  M. Mehrvar,et al.  Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[64]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[65]  R. O'Kennedy,et al.  Advances in biosensors for detection of pathogens in food and water , 2003 .

[66]  M. Willander,et al.  Structural Characterization of Graphene Nanosheets for Miniaturization of Potentiometric Urea Lipid Film Based Biosensors , 2012 .

[67]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[68]  P. Yáñez‐Sedeño,et al.  Gold nanoparticle-based electrochemical biosensors , 2005, Analytical and bioanalytical chemistry.

[69]  K. King,et al.  Probelia™ PCR system for rapid detection of Salmonella in milk powder and ricotta cheese , 2000 .

[70]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[71]  Yu Zhang,et al.  Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells , 2008, Biomedical microdevices.

[72]  A. Merkoçi,et al.  PCR-Genosensor Rapid Test for Detecting Salmonella , 2003 .

[73]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[74]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[75]  Magnus Willander,et al.  Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. , 2010, Biosensors & bioelectronics.

[76]  G. Volpe,et al.  A RAPID ELECTROCHEMICAL ELISA FOR THE DETECTION OF SALMONELLA IN MEAT SAMPLES , 2001 .

[77]  Chun-Sing Lee,et al.  Silicon nanowires as chemical sensors , 2003 .

[78]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[79]  V. Rotello,et al.  Nanoparticles: scaffolds and building blocks. , 2003, Accounts of chemical research.

[80]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[81]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[82]  S. Alegret Rigid carbon–polymer biocomposites for electrochemical sensing. A review , 1996 .

[83]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[84]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[85]  Åse Sternesjö,et al.  Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity , 2002 .

[86]  B. Limoges,et al.  An electrochemical metalloimmunoassay based on a colloidal gold label. , 2000, Analytical chemistry.

[87]  C. Heggum Policy Schemes and Trade in Dairy Products: Codex Alimentarius , 2011 .

[88]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[89]  J. Durrant,et al.  Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide Electrodes , 2005 .

[90]  P. Millner,et al.  Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase. , 2005, Biosensors & bioelectronics.

[91]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[92]  P. Howdle CELIAC (COELIAC) DISEASE , 2003 .

[93]  Hideaki Nakamura,et al.  Current research activity in biosensors , 2003, Analytical and bioanalytical chemistry.

[94]  E. Zacco,et al.  Renewable Protein A modified graphite-epoxy composite for electrochemical immunosensing. , 2004, Journal of immunological methods.

[95]  Jean-Louis Marty,et al.  Twenty years research in cholinesterase biosensors: from basic research to practical applications. , 2006, Biomolecular engineering.

[96]  M. Willander,et al.  Glucose Detection With a Commercial MOSFET Using a ZnO Nanowires Extended Gate , 2009, IEEE Transactions on Nanotechnology.

[97]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[98]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[99]  A. Bergwerff,et al.  ANTIBIOTICS AND DRUGS | Residue Determination , 2003 .

[100]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[101]  E. Zacco,et al.  Bioaffinity platforms based on carbon-polymer biocomposites for electrochemical biosensing , 2007 .

[102]  H. Yamanaka,et al.  Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. , 2009, Analytical chemistry.

[103]  M. Willander,et al.  Membrane potential measurements across a human fat cell using ZnO nanorods , 2009, Nanotechnology.

[104]  A Sternesjö,et al.  Determination of sulfamethazine residues in milk by a surface plasmon resonance-based biosensor assay. , 1995, Analytical biochemistry.

[105]  Toby Mottram,et al.  Biosensor Technology addressing Agricultural Problems , 2003 .

[106]  J. R. Sadaf,et al.  Structural Characterization and Biocompatible Applications of Graphene Nanosheets for Miniaturization of Potentiometric Cholesterol Biosensor , 2011 .

[107]  E. Paleček Oszillographische Polarographie der Nucleinsäuren und ihrer Bestandteile , 2004, Naturwissenschaften.

[108]  G. Guilbault,et al.  A urea-specific enzyme electrode. , 1969, Journal of the American Chemical Society.

[109]  M. Marco,et al.  Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. , 2009, Biosensors & bioelectronics.

[110]  Daxiang Cui,et al.  Study on interaction between gold nanorod and bovine serum albumin , 2007 .

[111]  I. Karube,et al.  Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenylx and atrazine , 2001 .

[112]  M. Marco,et al.  Electrochemical magneto immunosensing of antibiotic residues in milk. , 2007, Biosensors & bioelectronics.

[113]  Kagan Kerman,et al.  Methylene Blue as a Novel Electrochemical Hybridization Indicator , 2001 .

[114]  F. Gao,et al.  Effects of antisense-myc-conjugated single-walled carbon nanotubes on HL-60 cells. , 2007, Journal of nanoscience and nanotechnology.

[115]  M. Pividori,et al.  Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. , 2009, Biosensors & bioelectronics.

[116]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[117]  Zhong Lin Wang,et al.  Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. , 2009, Journal of the American Chemical Society.

[118]  Zhong-Lin Wang,et al.  Schottky‐Gated Probe‐Free ZnO Nanowire Biosensor , 2009, Advances in Materials.

[119]  A. Deisingh,et al.  Biosensors for the detection of bacteria. , 2004, Canadian journal of microbiology.

[120]  D. Bowtell,et al.  Options available — from start to finish — for obtaining expression data by microarray , 1999, Nature Genetics.

[121]  S. V. Kergaravat,et al.  Magneto immunosensor for gliadin detection in gluten-free foodstuff: towards food safety for celiac patients. , 2011, Biosensors & bioelectronics.

[122]  B Dufour,et al.  Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. , 2001, International journal of food microbiology.

[123]  L. C. Clark,et al.  ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY , 1962 .

[124]  Lars Samuelson,et al.  Sharp exciton emission from single InAs quantum dots in GaAs nanowires , 2003 .

[125]  Wu Wang,et al.  High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates , 2003 .

[126]  Andrew Baxter,et al.  Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol , 2005 .

[127]  Regine Hakenbeck,et al.  Development of an optical biosensor assay for detection of β-lactam antibiotics in milk using the penicillin-binding protein 2x* , 2004 .

[128]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[129]  Dmitri Ivnitski,et al.  Biosensors for detection of pathogenic bacteria , 1999 .

[130]  Erkang Wang,et al.  Synthesis and electrochemical applications of gold nanoparticles. , 2007, Analytica chimica acta.

[131]  I. Willner,et al.  Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen--antibody or oligonucleotide--DNA sensing processes by the precipitation of an insoluble product on electrodes. , 2001, Analytical chemistry.

[132]  B. Meloun,et al.  Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. , 1972, European journal of biochemistry.

[133]  M. Willander,et al.  Functionalised zinc oxide nanotube arrays as electrochemical sensors for the selective determination of glucose , 2011 .

[134]  Rene Kizek,et al.  Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor , 2002 .

[135]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.