Hybrid Particle-Continuum Methods in Computational Materials Physics

The research groups of the John von Neumann Institute for Computing (NIC) regularly conduct workshops on leading-edge subjects in computational physics. In this tradition, the Computational Materials Physics Group organized a workshop on Hybrid Particle-Continuum Methods jointly with the Institute of Advanced Simulation on March 4 7, 2013 at the Forschungszentrum Jülich. The goal of the workshop was to foster the exchange of ideas between the communities working on complex fluids and complex solids. Particular emphasis was placed on continuummediated interactions between particles as well as on the adaptive and non-adaptive coupling between particle-based and continuum-based descriptions of materials.

[1]  Joelle Frechette,et al.  Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. , 2009, Physical review letters.

[2]  M. Maxey,et al.  Force-coupling method for particulate two-phase flow: stokes flow , 2003 .

[3]  Neelesh A. Patankar,et al.  Fluctuating Immersed Material (FIMAT) Dynamics for the Direct Simulation of the Brownian Motion of Particles , 2006 .

[4]  Matej Praprotnik,et al.  A macromolecule in a solvent: adaptive resolution molecular dynamics simulation. , 2007, The Journal of chemical physics.

[5]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[6]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[7]  Alexander Lukyanov,et al.  Versatile Object-Oriented Toolkit for Coarse-Graining Applications. , 2009, Journal of chemical theory and computation.

[8]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[9]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[10]  L Delle Site,et al.  Comment on "Adaptive multiscale molecular dynamics of macromolecular fluids". , 2011, Physical review letters.

[11]  Ryoichi Yamamoto,et al.  Strict simulations of non-equilibrium dynamics of colloids , 2007 .

[12]  Boyce E. Griffith,et al.  Inertial coupling method for particles in an incompressible fluctuating fluid , 2012, 1212.6427.

[13]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[14]  John K. Eaton,et al.  Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking , 2009 .

[15]  P. Morrison,et al.  Hamiltonian description of the ideal fluid , 1998 .

[16]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[17]  R. Zwanzig,et al.  Compressibility effects in the hydrodynamic theory of Brownian motion , 1975, Journal of Fluid Mechanics.

[18]  Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. , 2001, Physical review letters.

[19]  N. Patankar,et al.  Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations , 2004 .

[20]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[21]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[22]  Christoph Junghans,et al.  Hybrid Approaches to Coarse-Graining using the VOTCA Package: Liquid Hexane , 2011 .

[23]  G Gompper,et al.  Dynamic regimes of fluids simulated by multiparticle-collision dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Paul J. Atzberger,et al.  Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations , 2009, J. Comput. Phys..

[25]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[26]  P. Coveney,et al.  Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. , 2007, The Journal of chemical physics.

[27]  H. Grabert,et al.  Projection Operator Techniques in Nonequilibrium Statistical Mechanics , 1982 .

[28]  Nikolaus A. Adams,et al.  Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics , 2012 .

[29]  A. Ladd,et al.  Lattice Boltzmann Simulations of Soft Matter Systems , 2008, 0803.2826.

[30]  Martin Rhodes,et al.  Introduction to Particle Technology , 1998 .

[31]  Juan J de Pablo,et al.  Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. , 2007, Physical review letters.

[32]  Xian Luo,et al.  Smoothed profile method for particulate flows: Error analysis and simulations , 2009, J. Comput. Phys..

[33]  Markus Uhlmann,et al.  Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime , 2008, 1108.6233.

[34]  J. Dual,et al.  Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid. , 2011, The Journal of the Acoustical Society of America.

[35]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[36]  Kurt Kremer,et al.  Structure-Based Coarse- and Fine-Graining in Soft Matter Simulations , 2008 .

[37]  Andrea Prosperetti,et al.  A fully resolved numerical simulation of turbulent flow past one or several spherical particles , 2012 .

[38]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[39]  C. Beenakker Ewald sum of the Rotne-Prager tensor , 1986 .

[40]  D. ben-Avraham,et al.  Normal mode analysis of G-actin. , 1993, Journal of molecular biology.

[41]  Martyn Hill,et al.  Ultrasonic Particle Manipulation , 2007 .

[42]  I. Silvera The solid molecular hydrogens in the condensed phase: Fundamentals and static properties , 1980 .

[43]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[44]  R. Kapral Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales , 2008 .

[45]  Kurt Kremer,et al.  Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining? , 2009, The European physical journal. E, Soft matter.

[46]  Robert E. Rudd,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[47]  Victor V. Goldman,et al.  The isotropic intermolecular potential for H2 and D2 in the solid and gas phases , 1978 .

[48]  Boyce E. Griffith,et al.  Staggered schemes for incompressible fluctuating hydrodynamics , 2012 .