Robust Estimation for Ordinary Differential Equation Models

Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data.

[1]  D. Cox Asymptotics for $M$-Type Smoothing Splines , 1983 .

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  Horst Malchow,et al.  Experimental demonstration of chaos in a microbial food web , 2005, Nature.

[4]  M. Wand Local Regression and Likelihood , 2001 .

[5]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[6]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[7]  R. Chakrabarti,et al.  Asymptotic Efficiency and Finite Sample Performance of Frequentist Quantum State Estimation , 2009, 0904.1628.

[8]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[9]  Hongyu Zhao,et al.  Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations , 2009, 0903.3400.

[10]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[11]  William W. Murdoch,et al.  Consumer-resource dynamics , 2003 .

[12]  R. Carroll,et al.  A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .

[13]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[14]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[15]  W. Härdle,et al.  Robust Non-parametric Function Fitting , 1984 .

[16]  N. Brunel Parameter estimation of ODE’s via nonparametric estimators , 2007, 0710.4190.

[17]  Hulin Wu,et al.  Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics , 2008 .

[18]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[19]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[20]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[21]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[22]  A. Gelman,et al.  Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions , 1996 .

[23]  S. Ellner,et al.  Predator–prey cycles in an aquatic microcosm: testing hypotheses of mechanism , 2002 .

[24]  David Lovelock,et al.  Exploring differential equations via graphics and data , 1996 .

[25]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[26]  M. C. Jones,et al.  Adaptive M -estimation in nonparametric regression , 1990 .

[27]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[28]  Donald L. DeAngelis,et al.  Inducible defences and the paradox of enrichment , 2004 .

[29]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[30]  Lorenz T. Biegler,et al.  Nonlinear parameter estimation: A case study comparison , 1986 .

[31]  Eric Walter,et al.  Identifiability of parametric models , 1987 .

[32]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[33]  R. Carroll,et al.  The Sandwich Variance Estimator: Efficiency Properties and Coverage Probability of Confidence Intervals , 2000 .

[34]  Michio Kondoh,et al.  Response to Comment on "Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability" , 2003, Science.

[35]  B. Ripley,et al.  Robust Statistics , 2018, Wiley Series in Probability and Statistics.

[36]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[37]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[38]  S. Ellner,et al.  Rapid evolution drives ecological dynamics in a predator–prey system , 2003, Nature.

[39]  Jiguo Cao,et al.  Estimating a Predator‐Prey Dynamical Model with the Parameter Cascades Method , 2008, Biometrics.

[40]  D. Billheimer Functional Data Analysis, 2nd edition edited by J. O. Ramsay and B. W. Silverman , 2007 .

[41]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[42]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..