On the restricted r–k class estimator and the restricted r–d class estimator in linear regression

In this article, the restricted r–k class estimator and restricted r–d class estimator are introduced, which are general estimators of the r–k class estimator by Baye and Parker [Combining ridge and principal component regression: A money demand illustration, Commun. Stat. Theory Methods 13(2) (1984), pp. 197–205] and the r–d class estimator by Kaçıranlar and Sakallıoğlu [Combining the Liu estimator and the principal component regression estimator, Commun. Stat. Theory Methods 30(12) (2001), pp. 2699–2705], respectively. For the two cases when the restrictions are true and not true, the superiority of the restricted r–k class estimator and r–d class estimator over the restricted ridge regression estimator by Sarkar [A new estimator combining the ridge regression and the restricted least squares methods of estimation, Commun. Stat. Theory Methods 21 (1992), pp. 1987–2000] and the restricted Liu estimator by Kaçıranlar et al. [A new biased estimator in linear regression and a detailed analysis of the widely analysed dataset on Portland cement, Sankhya - Indian J. Stat. 61B(3) (1999), pp. 443–459] are discussed with respect to the mean squared error matrix criterion. Furthermore, a Monte Carlo evaluation of the estimators is given to illustrate some of the theoretical results.

[1]  M. Revan Özkale,et al.  Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion , 2007 .

[2]  M. Özkale,et al.  Comparisons of the r − k class estimator to the ordinary least squares estimator under the Pitman’s closeness criterion , 2008 .

[3]  More on Liu-Type Estimator in Linear Regression , 2004 .

[4]  Nityananda Sarkar,et al.  Mean square error matrix comparison of some estimators in linear regressions with multicollinearity , 1996 .

[5]  N. Inagaki,et al.  r-k Class estimation in regression model with concomitant variables , 1996 .

[6]  Götz Trenkler,et al.  Nonnegative and positive definiteness of matrices modified by two matrices of rank one , 1991 .

[7]  Selahattin Kaçıranlar,et al.  COMBINING THE LIU ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR , 2001 .

[8]  Nityananda Sarkar,et al.  A new estimator combining the ridge regression and the restricted least squares methods of estimation , 1992 .

[9]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[10]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[11]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[12]  Helge Toutenburg,et al.  Linear models : least squares and alternatives , 1999 .

[13]  Tuning Parameter Selection and Various Good Fitting Characteristics for the Liu-Type Estimator in Linear Regression , 2008 .

[14]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[15]  Michael R. Baye,et al.  Combining ridge and principal component regression:a money demand illustration , 1984 .