On the restricted r–k class estimator and the restricted r–d class estimator in linear regression
暂无分享,去创建一个
[1] M. Revan Özkale,et al. Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion , 2007 .
[2] M. Özkale,et al. Comparisons of the r − k class estimator to the ordinary least squares estimator under the Pitman’s closeness criterion , 2008 .
[3] More on Liu-Type Estimator in Linear Regression , 2004 .
[4] Nityananda Sarkar,et al. Mean square error matrix comparison of some estimators in linear regressions with multicollinearity , 1996 .
[5] N. Inagaki,et al. r-k Class estimation in regression model with concomitant variables , 1996 .
[6] Götz Trenkler,et al. Nonnegative and positive definiteness of matrices modified by two matrices of rank one , 1991 .
[7] Selahattin Kaçıranlar,et al. COMBINING THE LIU ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR , 2001 .
[8] Nityananda Sarkar,et al. A new estimator combining the ridge regression and the restricted least squares methods of estimation , 1992 .
[9] Kejian Liu. Using Liu-Type Estimator to Combat Collinearity , 2003 .
[10] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .
[11] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[12] Helge Toutenburg,et al. Linear models : least squares and alternatives , 1999 .
[13] Tuning Parameter Selection and Various Good Fitting Characteristics for the Liu-Type Estimator in Linear Regression , 2008 .
[14] W. Massy. Principal Components Regression in Exploratory Statistical Research , 1965 .
[15] Michael R. Baye,et al. Combining ridge and principal component regression:a money demand illustration , 1984 .