Corneal endothelial regeneration in human eyes using endothelium-free grafts

[1]  S. Rodríguez-Fernández,et al.  Current development of alternative treatments for endothelial decompensation: Cell-based therapy. , 2021, Experimental eye research.

[2]  Can Zhao,et al.  Transplantation of human induced pluripotent stem cell-derived neural crest cells for corneal endothelial regeneration , 2021, Stem cell research & therapy.

[3]  Y. Shin,et al.  miR-30c-1 encourages human corneal endothelial cells to regenerate through ameliorating senescence , 2021, Aging.

[4]  B. Bussolati,et al.  Effect of Stem Cell-Derived Extracellular Vesicles on Damaged Human Corneal Endothelial Cells , 2021, Stem cells international.

[5]  J. Mehta,et al.  Corneal endothelial dysfunction: Evolving understanding and treatment options , 2020, Progress in Retinal and Eye Research.

[6]  Gregory A. Schmidt,et al.  Potential functional restoration of corneal endothelial cells in Fuchs endothelial corneal dystrophy by ROCK inhibitor (ripasudil). , 2020, American journal of ophthalmology.

[7]  J. Mehta,et al.  Regenerative capacity of the corneal transition zone for endothelial cell therapy , 2020, Stem Cell Research & Therapy.

[8]  N. Hirnschall,et al.  Descemet Stripping Only Supplemented With Topical Ripasudil for Fuchs Endothelial Dystrophy 12-Month Outcomes of the Sydney Eye Hospital Study. , 2020, Cornea.

[9]  June Artaechevarria Artieda,et al.  5-Year Outcomes of Descemet Stripping Only in Fuchs Dystrophy. , 2020, Cornea.

[10]  Ye-sheng Xu,et al.  Assessments of tear meniscus height, tear film thickness, and corneal epithelial thickness after deep anterior lamellar keratoplasty , 2018, Journal of Zhejiang University-SCIENCE B.

[11]  N. Koizumi,et al.  Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy , 2018, The New England journal of medicine.

[12]  Publisher's Note , 2018, Anaesthesia.

[13]  Simone Beheregaray,et al.  Descemetorhexis Without Grafting for Fuchs Endothelial Dystrophy—Supplementation With Topical Ripasudil , 2017, Cornea.

[14]  Jorge E Valdez-Garcia,et al.  Adult white New Zealand rabbit as suitable model for corneal endothelial engineering , 2015, BMC Research Notes.

[15]  J. Schwartzkopff,et al.  Regeneration of corneal endothelial cells following keratoplasty in rats with bullous keratopathy , 2014, Molecular vision.

[16]  Shuang-Qing Wu,et al.  Long-term comparison of full-bed deep lamellar keratoplasty with penetrating keratoplasty in treating corneal leucoma caused by herpes simplex keratitis. , 2012, American journal of ophthalmology.

[17]  N. Joyce Proliferative capacity of corneal endothelial cells. , 2012, Experimental eye research.

[18]  L. Ouchchane,et al.  Viability assessment of fresh and frozen/thawed isolated human follicles: reliability of two methods (Trypan blue and Calcein AM/ethidium homodimer-1) , 2011, Journal of Assisted Reproduction and Genetics.

[19]  D. Boehringer,et al.  Regeneration of corneal endothelium following complete endothelial cell loss in rat keratoplasty , 2010, Molecular vision.

[20]  Yu-feng Yao A Novel Technique for Performing Full-Bed Deep Lamellar Keratoplasty , 2008, Cornea.

[21]  N. Joyce,et al.  Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells , 2008, Molecular vision.

[22]  N. Joyce,et al.  Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells , 2007, Molecular vision.

[23]  Yong-ming Zhang,et al.  [Optical penetrating keratoplasty in eyes with severe keratomycosis after therapeutic keratoplasty]. , 2005, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[24]  N. Joyce,et al.  Comparison of the proliferative capacity of human corneal endothelial cells from the central and peripheral areas. , 2005, Investigative ophthalmology & visual science.

[25]  K. Nakayama,et al.  Involvement of p27KIP1 in the proliferation of the developing corneal endothelium. , 2004, Investigative ophthalmology & visual science.

[26]  P. Zhou,et al.  Therapeutic penetrating keratoplasty in severe fungal keratitis using cryopreserved donor corneas , 2003, The British journal of ophthalmology.

[27]  N. Joyce Proliferative capacity of the corneal endothelium , 2003, Progress in Retinal and Eye Research.

[28]  Yu-feng Yao,et al.  Autologous limbal grafting combined with deep lamellar keratoplasty in unilateral eye with severe chemical or thermal burn at late stage. , 2002, Ophthalmology.

[29]  N. Joyce,et al.  Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. , 2002, Investigative ophthalmology & visual science.

[30]  Y. Nagamura,et al.  Evaluation of mitochondrial function and membrane integrity by dual fluorescent staining for assessment of sperm status in rats. , 2002, The Journal of toxicological sciences.

[31]  N. Efron,et al.  A Population Study of the Normal Cornea using an in Vivo, Slit-Scanning Confocal Microscope , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[32]  W. M. Bourne Cellular Changes in Transplanted Human Corneas , 2001, Cornea.

[33]  N. Joyce,et al.  EDTA: a promoter of proliferation in human corneal endothelium. , 2000, Investigative ophthalmology & visual science.

[34]  N. Joyce,et al.  Cell cycle kinetics in corneal endothelium from old and young donors. , 2000, Investigative ophthalmology & visual science.

[35]  Bourne Wm,et al.  Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty: study with light and electron microscopy. , 2000 .

[36]  T. Friberg,et al.  Corneal endothelial cell loss after multiple vitreoretinal procedures and the use of silicone oil. , 1999, Ophthalmic surgery and lasers.

[37]  P. Cochard,et al.  Dual staining assessment of Schwann cell viability within whole peripheral nerves using calcein-AM and ethidium homodimer , 1997, Journal of Neuroscience Methods.

[38]  D. Hodge,et al.  Continued endothelial cell loss ten years after lens implantation. , 1994, Ophthalmology.

[39]  A. Adamis,et al.  Fuchs' endothelial dystrophy of the cornea. , 1993, Survey of ophthalmology.

[40]  J. Sugar,et al.  Growth of human corneal endothelial cells in culture. , 1989, Investigative ophthalmology & visual science.

[41]  H. Edelhauser,et al.  Cellular migration and morphology in corneal endothelial wound repair. , 1985, Investigative ophthalmology & visual science.

[42]  R O Schultz,et al.  Corneal endothelial changes in type I and type II diabetes mellitus. , 1984, American journal of ophthalmology.

[43]  L. Hyldahl Primary cell cultures from human embryonic corneas. , 1984, Journal of cell science.

[44]  J. Alvarado,et al.  Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. , 1984, Investigative ophthalmology & visual science.

[45]  K. Kani,et al.  Cell movements in a living mammalian tissue: Long‐term observation of individual cells in wounded corneal endothelia of cats , 1982, Journal of morphology.

[46]  R. Witmer,et al.  Corneal endothelial changes in primary acute angle-closure glaucoma. , 1982, Ophthalmology.

[47]  E. Zavala,et al.  Correlative microscopy and tissue culture of congenital hereditary endothelial dystrophy. , 1982, American journal of ophthalmology.

[48]  B. Yue,et al.  Mass culture of human corneal endothelial cells. , 1979, Archives of ophthalmology.

[49]  C. Hanna,et al.  Endothelial cell population changes of human cornea during life. , 1978, Archives of ophthalmology.

[50]  D L Van Horn,et al.  Regenerative capacity of the corneal endothelium in rabbit and cat. , 1977, Investigative ophthalmology & visual science.

[51]  R A Laing,et al.  Changes in the corneal endothelium as a function of age. , 1976, Experimental eye research.

[52]  J. E. Robbins,et al.  The Human Corneal Endothelium , 1966 .