Probabilistic Tangent Subspace Method for M-QAM Signal Equalization in Time-Varying Multipath Channels

A new machine learning method called probabilistic tangent subspace is introduced to improve the performance of the equalization for the M-QAM modulation signals in wireless communication systems. Due to the mobility of communicator, wireless communication channels are time variant. The uncertainties in the time-varying channel's coefficients cause the amplitude distortion as well as the phase distortion of the M-QAM modulation signals. On the other hand, the Probabilistic Tangent Subspace method is designed to encode the pattern variations. Therefore, we are motivated to adopt this method to develop a classifier as an equalizer for time-varying channels. Simulation results show that this equalizer performs better than those based on nearest neighbor method and support vector machine method for Rayleigh fading channels.