A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements
暂无分享,去创建一个
Hermann G. Matthies | Alexander Litvinenko | Bojana V. Rosic | Oliver Pajonk | H. Matthies | B. Rosic | A. Litvinenko | O. Pajonk
[1] Panos G. Georgopoulos,et al. Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .
[2] N. Wiener. The Homogeneous Chaos , 1938 .
[3] Edward N. Lorenz,et al. Irregularity: a fundamental property of the atmosphere* , 1984 .
[4] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[5] Rainer Niekamp,et al. Low Rank Approximation in Spectral Stochastic Finite Element method with Solution Space Adaption , 2010 .
[6] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[7] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[8] Jürgen Potthoff,et al. White Noise: An Infinite Dimensional Calculus , 1993 .
[9] Paul Malliavin,et al. Stochastic Analysis , 1997, Nature.
[10] Hermann G. Matthies,et al. Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.
[11] Nicholas Zabaras,et al. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .
[12] Steven Finette,et al. Polynomial Chaos Quantification of the Growth of Uncertainty Investigated with a Lorenz Model , 2010 .
[13] Craig H. Bishop,et al. Adaptive sampling with the ensemble transform Kalman filter , 2001 .
[14] Edward N. Lorenz. A look at some details of the growth of initial uncertainties , 2005 .
[15] David Wooff,et al. Bayes Linear Statistics: Theory and Methods , 2007 .
[16] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[17] H. Matthies. Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .
[18] Jeffrey L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .
[19] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[20] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[21] Neri Merhav,et al. Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.
[22] Gene H. Golub,et al. Matrix computations , 1983 .
[23] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[24] I. Segal,et al. Integrals and operators , 1968 .
[25] Hermann G. Matthies,et al. Uncertainty Quantification with Stochastic Finite Elements , 2007 .
[26] Anthony Nouy,et al. Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..
[27] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[28] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[29] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[30] Georg A. Gottwald,et al. Ensemble propagation and continuous matrix factorization algorithms , 2009 .
[31] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[32] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[33] Emmanuel D. Blanchard,et al. Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters , 2010 .
[34] Y. Bar-Shalom,et al. The probabilistic data association filter , 2009, IEEE Control Systems.
[35] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[36] S. Janson. Gaussian Hilbert Spaces , 1997 .
[37] J. Whitaker,et al. Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.
[38] Roger G. Ghanem,et al. Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..
[39] J. Whitaker,et al. Ensemble Data Assimilation without Perturbed Observations , 2002 .
[40] G. Evensen. Sampling strategies and square root analysis schemes for the EnKF , 2004 .
[41] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[42] Tarek A. El-Moselhy,et al. Field solver technologies for variation-aware interconnect parasitic extraction , 2010 .
[43] G. Evensen. The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.
[44] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[45] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[46] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[47] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[48] B. Øksendal. Stochastic differential equations : an introduction with applications , 1987 .
[49] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[50] G. Evensen. Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .
[51] A. Skorokhod,et al. Studies in the theory of random processes , 1966 .
[52] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[53] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[54] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[55] Benjamin L. Pence,et al. A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.
[56] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[57] Hermann G. Matthies,et al. Uncertainty updating in the description of heterogeneous materials , 2010 .