A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements

Abstract We present a fully deterministic method to compute sequential updates for stochastic state estimates of dynamic models from noisy measurements. It does not need any assumptions about the type of distribution for either data or measurement—in particular it does not have to assume any of them as Gaussian. Here the implementation is based on a polynomial chaos expansion (PCE) of the stochastic variables of the model—however, any other orthogonal basis would do. We use a minimum variance estimator that combines an a priori state estimate and noisy measurements in a Bayesian way. For computational purposes, the update equation is projected onto a finite-dimensional PCE-subspace. The resulting Kalman-type update formula for the PCE coefficients can be efficiently computed solely within the PCE. As it does not rely on sampling, the method is deterministic, robust, and fast. In this paper we discuss the theory and practical implementation of the method. The original Kalman filter is shown to be a low-order special case. In a first experiment, we perform a bi-modal identification using noisy measurements. Additionally, we provide numerical experiments by applying it to the well known Lorenz-84 model and compare it to a related method, the ensemble Kalman filter.

[1]  Panos G. Georgopoulos,et al.  Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .

[2]  N. Wiener The Homogeneous Chaos , 1938 .

[3]  Edward N. Lorenz,et al.  Irregularity: a fundamental property of the atmosphere* , 1984 .

[4]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[5]  Rainer Niekamp,et al.  Low Rank Approximation in Spectral Stochastic Finite Element method with Solution Space Adaption , 2010 .

[6]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[7]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[8]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[9]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[10]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[11]  Nicholas Zabaras,et al.  An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .

[12]  Steven Finette,et al.  Polynomial Chaos Quantification of the Growth of Uncertainty Investigated with a Lorenz Model , 2010 .

[13]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[14]  Edward N. Lorenz A look at some details of the growth of initial uncertainties , 2005 .

[15]  David Wooff,et al.  Bayes Linear Statistics: Theory and Methods , 2007 .

[16]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[17]  H. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .

[18]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[19]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[20]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[21]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[24]  I. Segal,et al.  Integrals and operators , 1968 .

[25]  Hermann G. Matthies,et al.  Uncertainty Quantification with Stochastic Finite Elements , 2007 .

[26]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[27]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[28]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[29]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[30]  Georg A. Gottwald,et al.  Ensemble propagation and continuous matrix factorization algorithms , 2009 .

[31]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[32]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[33]  Emmanuel D. Blanchard,et al.  Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters , 2010 .

[34]  Y. Bar-Shalom,et al.  The probabilistic data association filter , 2009, IEEE Control Systems.

[35]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[36]  S. Janson Gaussian Hilbert Spaces , 1997 .

[37]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[38]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[39]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[40]  G. Evensen Sampling strategies and square root analysis schemes for the EnKF , 2004 .

[41]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[42]  Tarek A. El-Moselhy,et al.  Field solver technologies for variation-aware interconnect parasitic extraction , 2010 .

[43]  G. Evensen The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.

[44]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[45]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[46]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[47]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[48]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[49]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[50]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[51]  A. Skorokhod,et al.  Studies in the theory of random processes , 1966 .

[52]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[53]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[54]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[55]  Benjamin L. Pence,et al.  A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.

[56]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[57]  Hermann G. Matthies,et al.  Uncertainty updating in the description of heterogeneous materials , 2010 .