Nonlinear interactions in an organic polariton condensate

We demonstrate an organic polariton condensate that exhibits nonlinear interactions at room-temperature. Upon reaching threshold, we observe a superlinear power dependence, a power-dependent blueshift and the emergence of long-range spatial coherence resulting from polariton interactions.

[1]  I. Carusotto,et al.  Probing microcavity polariton superfluidity through resonant Rayleigh scattering. , 2004, Physical Review Letters.

[2]  M. Wouters,et al.  Quantized vortices in an exciton–polariton condensate , 2008 .

[3]  I. Carusotto,et al.  Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates , 2007, 0707.1016.

[4]  Carlos Silva,et al.  Estimating the conditions for polariton condensation in organic thin-film microcavities. , 2012, The Journal of chemical physics.

[5]  P. S. Eldridge,et al.  Polariton ring condensates and sunflower ripples in an expanding quantum liquid , 2012, Physical Review B.

[6]  Single vortex-antivortex pair in an exciton-polariton condensate , 2009, 1005.1897.

[7]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[8]  Yoshihisa Yamamoto,et al.  Spatial coherence of a polariton condensate. , 2007, Physical review letters.

[9]  D. Snoke Polariton Condensation and Lasing , 2012, 1205.5756.

[10]  C.‐c. Wu,et al.  Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties , 2004 .

[11]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[12]  M. S. Skolnick,et al.  Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities , 1999 .

[13]  I. Carusotto,et al.  Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. , 2007, Physical review letters.

[14]  G. Rocca,et al.  Microscopic theory of polariton lasing via vibronically assisted scattering , 2013, 1306.2222.

[15]  V. Savona,et al.  Energy relaxation in one-dimensional polariton condensates , 2010, 1008.5320.

[16]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[17]  S. Maier,et al.  Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities , 2013 .

[18]  V. G. Sala,et al.  All-optical control of the quantum flow of a polariton condensate , 2011, 1103.4885.

[19]  M. Först,et al.  Molecular host-guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix. , 2010, Journal of Physical Chemistry B.

[20]  Linewidth of a polariton laser: Theoretical analysis of self-interaction effects , 2003, cond-mat/0303494.

[21]  P. S. Eldridge,et al.  All-dielectric GaN microcavity: Strong coupling and lasing at room temperature , 2013 .

[22]  Peter Reineker,et al.  Fast polariton relaxation in strongly coupled organic microcavities , 2004 .

[23]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[24]  F. Bœuf,et al.  Stimulation of Polariton Photoluminescence in Semiconductor Microcavity , 1998 .

[25]  S. Forrest,et al.  Strong exciton-photon coupling in an organic single crystal microcavity. , 2008, Physical review letters.

[26]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[27]  H. Zoubi,et al.  Exciton-polariton kinematic interactions in organic microcavities , 2005 .

[28]  V. G. Sala,et al.  Polariton Superfluids Reveal Quantum Hydrodynamic Solitons , 2011, Science.

[29]  Sven Höfling,et al.  Observation of Bogoliubov excitations in exciton-polariton condensates , 2008 .

[30]  M. Litinskaya Exciton polariton kinematic interaction in crystalline organic microcavities , 2008 .

[31]  S. Pau,et al.  Exciton-Polaritons in Microcavities , 1994 .

[32]  Acknowledgements , 1992, Experimental Gerontology.

[33]  Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. , 2012, Optics express.

[34]  Rajeev J Ram,et al.  Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[35]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Francesco Tassone,et al.  Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons , 1999 .

[37]  G. Rocca,et al.  Organic-based microcavities with vibronic progressions: Photoluminescence , 2009 .

[38]  S. Forrest,et al.  Temperature dependence of polariton lasing in a crystalline anthracene microcavity , 2012 .

[39]  D. Sanvitto,et al.  Exciton Polaritons in Microcavities , 2012 .

[40]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[41]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[42]  C. Piermarocchi,et al.  Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells , 1998 .

[43]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[44]  G. Rocca,et al.  Polariton states in disordered organic microcavities , 2005 .

[45]  Tassone,et al.  Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures. , 1996, Physical review. B, Condensed matter.

[46]  G. Patriarche,et al.  From excitonic to photonic polariton condensate in a ZnO-based microcavity. , 2013, Physical review letters.

[47]  Y. Chien,et al.  Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry , 2004 .

[48]  Nonlinear interactions in an organic polariton condensate , 2014, CLEO 2014.