Millimeter-Wave Wafer-Scale Silicon BiCMOS Power Amplifiers Using Free-Space Power Combining

This paper presents the first millimeter-wave wafer-scale power-amplifier array implemented in a 0.13-μ m BiCMOS technology. The power combining is done in the free-space using high efficiency on-chip antennas. A 3 × 3 power-amplifier array is demonstrated with an equivalent isotropic radiated power of 33-35 dBm at 90-98 GHz. This results in a total on-chip power of 21-23 dBm and a total radiated power of 17.5-19.5 dBm. The measured patterns of the array show single-mode operation and ~100% free-space power-combining efficiency with a 3-dB beamwidth of 28° and a directivity of 15.5 dB (gain of 12 dB). The total power-combining efficiency including the antenna losses is 45±10%. The application areas are in millimeter-wave transmitters and wafer-scale phased arrays.

[1]  Payam Heydari,et al.  A 94-GHz passive imaging receiver using a balanced LNA with embedded Dicke switch , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[2]  M.P. De Lisio,et al.  Monolithic 40-GHz 670-mW HBT grid amplifier , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[3]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[4]  Alberto Valdes-Garcia,et al.  A SiGe BiCMOS 16-element phased-array transmitter for 60GHz communications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[5]  Christoph Scheytt,et al.  A Subharmonic Receiver in SiGe Technology for 122$~$GHz Sensor Applications , 2010, IEEE Journal of Solid-State Circuits.

[6]  Jeng-Han Tsai,et al.  A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[7]  Hans-Martin Rein,et al.  Influence of impact-ionization-induced instabilities on the maximum usable output voltage of Si-bipolar transistors , 2001 .

[8]  M.P. De Lisio,et al.  A 44-60 GHz monolithic pHEMT grid amplifier , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[9]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[10]  Duixian Liu,et al.  A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[11]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[12]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[13]  Robert A. York,et al.  Spatial power combining for high-power transmitters , 2000 .

[14]  Gabriel M. Rebeiz,et al.  A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with ≫ 90 mW output , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[15]  Lei Zhou,et al.  A Single-Chip Dual-Band 22-29-GHz/77-81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE J. Solid State Circuits.

[16]  Kari Halonen,et al.  W-Band CMOS Amplifiers Achieving $+$10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE Journal of Solid-State Circuits.

[17]  G.M. Rebeiz,et al.  A W-band SiGe 1.5V LNA for imaging applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[18]  Tatsuya Hirose,et al.  A 77GHz transceiver in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[19]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[20]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[21]  Gabriel M. Rebeiz,et al.  Single and Four-Element $Ka$-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control , 2009, IEEE Transactions on Microwave Theory and Techniques.

[22]  Amir Mortazawi,et al.  Quasi-optical transmit/receive front ends , 1998 .

[23]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[24]  Alvydas Lisauskas,et al.  A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[25]  A.L. Sailer,et al.  A high-power W-band quasi-optical frequency tripler , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[26]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[27]  M. A. Gouker A circuit-fed, tile-approach configuration for millimeter-wave spatial power combining , 1999, 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference.

[28]  Toshiya Mitomo,et al.  A 77 GHz 90 nm CMOS transceiver for FMCW radar applications , 2009, 2009 Symposium on VLSI Circuits.

[29]  Jeng-Han Tsai,et al.  Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[30]  D.B. Rutledge,et al.  W-band waveguide-packaged InP HEMT reflection grid amplifier , 2006, IEEE Microwave and Wireless Components Letters.

[31]  Gabriel M. Rebeiz,et al.  A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$\mu$ m SiGe BiCMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[32]  J.J. Rosenberg,et al.  Power and spectral regrowth performance of 10-W and 16-W Ka-band power amplifiers with single-chip output stages , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[33]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[34]  Jurgen Hasch,et al.  77 GHz radar transceiver with dual integrated antenna elements , 2010, German Microwave Conference Digest of Papers.

[35]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[36]  Z.B. Popovic,et al.  High-power hybrid quasi-optical Ka-band amplifier design , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[37]  Zoya Popovic,et al.  Active and quasi - optical arrays for solid - state power combining , 1997 .

[38]  P. Kangaslahti,et al.  W-Band GaN MMIC with 842 mW output power at 88 GHz , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[39]  Y.C. Chen,et al.  A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[40]  Z. Popovic,et al.  Two Ka-band quasi-optical amplifier arrays , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[41]  Jeng-Han Tsai A 55–64 GHz Fully-Integrated Sub-Harmonic Wideband Transceiver in 130 nm CMOS Process , 2009, IEEE Microwave and Wireless Components Letters.

[42]  Gabriel M. Rebeiz,et al.  A 3 G-Bit/s W-band SiGe ASK receiver with a high-efficiency on-chip electromagnetically-coupled antenna , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[43]  Xiaofeng Li,et al.  Electrical funnel: A broadband signal combining method , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[44]  Gabriel M. Rebeiz,et al.  Wafer-scale W-band power amplifiers using on-chip antennas , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[45]  D. S. Deakin,et al.  A 5-watt, 37-GHz monolithic grid amplifier , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[46]  Yan Zhao,et al.  A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160GHz , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).