Modeling of morphology evolution in the injection molding process of thermoplastic polymers

Abstract A thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained moldings is performed, with particular reference to semi-crystalline polymers. The paper is divided into two parts: in the first part, the state of the art on the subject is outlined and discussed; in the second part, an example of the characterization required for a satisfactorily understanding and description of the phenomena is presented, starting from material characterization, passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the moldings. In particular, fully characterized injection molding tests are presented using an isotactic polypropylene, previously carefully characterized as far as most of properties of interest. The effects of both injection flow rate and mold temperature are analyzed. The resulting moldings morphology (in terms of distribution of crystallinity degree, molecular orientation and crystals structure and dimensions) are analyzed by adopting different experimental techniques (optical, electronic and atomic force microscopy, IR and WAXS analysis). Final morphological characteristics of the samples are compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.

[1]  G. G. Peters,et al.  Influence of cooling rate on pVT-data of semicrystalline polymers , 2001 .

[2]  V. Carrubba,et al.  Isotactic polypropylene solidification under pressure and high cooling rates. A master curve approach , 2000 .

[3]  A. Sorrentino,et al.  Molecular orientation and strain in injection moulding of thermoplastics , 2002 .

[4]  A. B. Metzner Rheology of Suspensions in Polymeric Liquids , 1985 .

[5]  H. Barnes,et al.  A simple empirical model describing the steady-state shear and extensional viscosities of polymer melts , 1992 .

[6]  T. Kwon,et al.  Numerical modeling of injection/compression molding for center-gated disk: Part I. Injection molding with viscoelastic compressible fluid model , 1999 .

[7]  Gilles Régnier,et al.  Nature of contact between polymer and mold in injection molding. Part II: Influence of mold deflection on pressure history and shrinkage , 2000 .

[8]  S. F. Shen,et al.  A finite-element/finite-difference simulation of the injection-molding filling process , 1980 .

[9]  G. Marin,et al.  Shear Modification of Long-Chain Branched Polymers: A Theoretical Approach Using the Pom-Pom Model , 2003 .

[10]  V. Brucato,et al.  Injection Molding of iPP , 1992 .

[11]  R. Tanner A suspension model for low shear rate polymer solidification , 2002 .

[12]  R. Fulchiron,et al.  Influence of shear on polypropylene crystallization: morphology development and kinetics , 2002 .

[13]  J. Collier,et al.  Unsteady‐state heat transfer in a crystallizing polymer , 1973 .

[14]  C. Carrot,et al.  Polypropylene during crystallization from the melt as a model for the rheology of molten-filled polymers , 1996 .

[15]  J. Gelin,et al.  Improving mould design and injection parameters in metal injection moulding by accurate 3D finite element simulation , 2002 .

[16]  R. Cahn,et al.  Processing of polymers , 1997 .

[17]  A. Beris,et al.  Lattice-based simulations of chain conformations in semi-crystalline polymers with application to flow-induced crystallization , 1999 .

[18]  H. Newman,et al.  The skin‐core morphology and structure–property relationships in injection‐molded polypropylene , 1972 .

[19]  S. Vleeshouwers,et al.  A rheological study of shear induced crystallization , 1996 .

[20]  J. Lebrun,et al.  Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions , 2003 .

[21]  F. Baaijens,et al.  Differential constitutive equations for polymer melts: The extended Pom–Pom model , 2001 .

[22]  R. D. Sudduth,et al.  A comparison of induction time and crystallization rate for syndiotactic polystyrene , 2002 .

[23]  K. Narh,et al.  Computer simulation of stress‐induced crystallization in injection molded thermoplastics , 2001 .

[24]  Paul J. Flory,et al.  Thermodynamics of Crystallization in High Polymers. I. Crystallization Induced by Stretching , 1947 .

[25]  J. Haudin,et al.  Shear-induced crystallization of polypropylene: Influence of molecular weight , 2000 .

[26]  A. Ziabicki The mechanisms of ‘neck-like’ deformation in high-speed melt spinning. 2. Effects of polymer crystallization , 1988 .

[27]  A. Isayev,et al.  Flow‐induced crystallization in the injection molding of polymers: A thermodynamic approach , 2005 .

[28]  T. Taniguchi,et al.  Crystallization kinetics of polypropylene under high pressure and steady shear flow , 2003 .

[29]  A. Isayev,et al.  Crystallinity and microstructure in injection moldings of isotactic polypropylenes. Part 1: A new approach to modeling and model parameters , 1999 .

[30]  Fpt Frank Baaijens,et al.  The computation of properties of injection-moulded products , 1995 .

[31]  K. A. Narh,et al.  Simplified model of stress-induced crystallization kinetics of polymers , 2002 .

[32]  A. Vautrin,et al.  Crystallization of Isotactic Polypropylene under High Pressure (γ Phase) , 2000 .

[33]  J. Schultz Roles of ‘solute’ and heat flow in the development of polymer microstructure , 1991 .

[34]  H. Winter,et al.  Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene) , 1991 .

[35]  D. Bassett,et al.  On row structures, secondary nucleation and continuity in α-polypropylene , 1998 .

[36]  H. A. Lord,et al.  Mold‐filling studies for the injection molding of thermoplastic materials. Part II: The transient flow of plastic materials in the cavities of injection‐molding dies , 1975 .

[37]  G. Titomanlio,et al.  Modeling flow induced crystallization in film casting of polypropylene , 2004 .

[38]  G. Floudas,et al.  Shear-induced crystallization of poly(ε-caprolactone). 2. Evolution of birefringence and dichroism , 2000 .

[39]  D. J. Coyle,et al.  The kinematics of fountain flow in mold‐filling , 1987 .

[40]  H. Winter,et al.  Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization , 2001 .

[41]  M. Bevis,et al.  Processing and Physical Property Relationships in Injection-Molded Isotactic Polypropylene .2. Morphology and Crystallinity , 1997 .

[42]  V. Brucato,et al.  On the Simulation of Thermoplastic Injection Moulding Process , 1997 .

[43]  A. Keller,et al.  Flow-induced orientation and structure formation , 2006 .

[44]  A. Hrymak,et al.  The Effect of Fountain Flow on Molecular Orientation in Injection Molding , 1988 .

[45]  N. Grizzuti,et al.  Measurements of the rheological behavior of a crystallizing polymer by an “inverse quenching” technique , 2003 .

[46]  M. Kamal,et al.  Simulation of injection mold filling of viscoelastic polymer with fountain flow , 1988 .

[47]  Mustafa Kamal,et al.  The injection molding of thermoplastics part I: Theoretical model , 1972 .

[48]  R. Pantani,et al.  Relevance of mold‐induced thermal boundary conditions and cavity deformation in the simulation of injection molding , 2001 .

[49]  C. A. Hieber Modeling/simulating the injection molding of isotactic polypropylene , 2002 .

[50]  John D. Hoffman,et al.  Crystallization of Bulk Polymers With Chain Folding: Theory of Growth of Lamellar Spherulites , 1961, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[51]  H. Laun Prediction of Elastic Strains of Polymer Melts in Shear and Elongation , 1986 .

[52]  N. Phan-Thien,et al.  Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics , 1999 .

[53]  N. S. Murthy,et al.  General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers , 1990 .

[54]  H. H. Dannelongue,et al.  Numerical Simulation of the Advancing Front in Injection Molding , 1991 .

[55]  G. G. Peters,et al.  Development and Validation of a Recoverable Strain‐Based Model for Flow‐Induced Crystallization of Polymers , 2001 .

[56]  Luc Chevalier,et al.  Crystallization of polymers under strain : from molecular properties to macroscopic models , 2003 .

[57]  R. Samuels,et al.  Structured Polymer Properties , 1975 .

[58]  R. Pantani,et al.  Relevance of Crystallisation Kinetics in the Simulation of the Injection Molding Process , 2001 .

[59]  A. Doufas,et al.  Simulation of melt spinning including flow-induced crystallization: Part II. Quantitative comparisons with industrial spinline data , 2000 .

[60]  J. Haudin,et al.  Experimental study of shear-induced crystallization of an impact polypropylene copolymer , 1996 .

[61]  P. Maffettone,et al.  Coupling between kinetics and rheological parameters in the flow-induced Crystallization of thermoplastic polymers , 2002 .

[62]  N. Pogodina,et al.  Polypropylene crystallization as a physical gelation process , 1998 .

[63]  P. J. Phillips,et al.  The γ-phase of high molecular weight isotactic polypropylene: III. The equilibrium melting point and the phase diagram , 1998 .

[64]  M. Miles,et al.  Some recent developments in SPM of crystalline polymers , 2001 .

[65]  J. F. Dijksman,et al.  Integration of Theory and Applications in Applied Mechanics: "Choice of papers presented at the First National Mechanics Congress, April 2-4, 1990, Rolduc, Kerkrade, The Netherlands" , 1990 .

[66]  G. Menges,et al.  Einfluß der Verarbeitungsbedingungen auf die Kristallinität und Gefügestruktur teilkristalliner Spritzgußteile , 1976 .

[67]  T. Papathanasiou Modelling of injection mold filling: Effect of undercooling on polymer crystallization , 1995 .

[68]  C. A. Hieber,et al.  A unified simulation of the filling and postfilling stages in injection molding. Part I: Formulation , 1991 .

[69]  A. Cunha,et al.  The thermomechanical environment and the microstructure of an injection moulded polypropylene copolymer , 2002 .

[70]  B. Hsiao,et al.  Shear-enhanced crystallization in isotactic polypropylenePart 2. Analysis of the formation of the oriented “skin” , 2000 .

[71]  M. Kamal,et al.  Experimental study of post‐shear crystallization of polypropylene melts , 1999 .

[72]  M. Kamal,et al.  A structure‐oriented computer simulation of the injection molding of viscoelastic crystalline polymers part I: Model with fountain flow, packing, solidification , 1986 .

[73]  Aam Ton Flaman Build-up and relaxation of molecular orientation in injection moulding , 1990 .

[74]  Andrea Sorrentino,et al.  Molecular orientation in injection molding: experiments and analysis , 2004 .

[75]  D. Binding,et al.  High pressure capillary rheometry of polymeric fluids , 2000 .

[76]  G. Titomanlio,et al.  Evidences of flow induced crystallization during characterized Film casting experiments , 2002 .

[77]  Valerio Brucato,et al.  Crystallization kinetics in relation to polymer processing , 1993 .

[78]  K. K. Wang,et al.  Shrinkage Prediction for Slowly-Crystallizing Thermoplastic Polymers in Injection Molding , 1997 .

[79]  R. Zheng,et al.  A model for post-flow induced crystallization: General equations and predictions , 2004 .

[80]  T. Coupez,et al.  Finite element solution of the 3D mold filling problem for viscous incompressible fluid , 1998 .

[81]  H. Meijer,et al.  Stress Induced Crystallization in Elongational Flow , 2003 .

[82]  C. A. Hieber,et al.  Toward a viscoelastic modelling of the injection molding of polymers , 1980 .

[83]  M. Fujiyama,et al.  Structure of skin layer in injection‐molded polypropylene , 1988 .

[84]  W. Wenig,et al.  Injection molding of polypropylene: X‐ray investigation of the skin–core morphology , 1993 .

[85]  Giuseppe Titomanlio,et al.  Crystallization kinetics and solidified structure in iPP under high cooling rates , 2003 .

[86]  C. A. Hieber Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate) , 1995 .

[87]  T. W. Haas,et al.  Effects of shear stress on the crystallization of linear polyethylene and polybutene‐1 , 1969 .

[88]  R. Tanner On the flow of crystallizing polymers: I. Linear regime , 2003 .

[89]  H. Ito,et al.  Effect of Pressure and Shear Stress on Crystallization Behaviors in Injection Molding , 1996 .