Sparse representations: Recovery conditions and fast algorithm for a new criterion

Most applications of sparse representations are based on a combined ℓ<sub>2</sub>-ℓ<sub>1</sub> criterion, where the least-squares-part ensures closeness to the observations and the ℓ<sub>1</sub>-part sparsity. This choice leads to quite efficient algorithms and has a clear connection to maximum likelihood approaches in case of additive Gaussian noise. We replace the least-squares-part by a ℓ<sub>1</sub>-part and investigate the recovery conditions of the so-obtained ℓ<sub>1</sub> - ℓ<sub>1</sub> criterion. We then propose an algorithm, that minimizes the criterion, in a finite number of steps.

[1]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[2]  K.M. Ahmed,et al.  Very low bit-rate video coding , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[3]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[4]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[5]  R. Fletcher Practical Methods of Optimization , 1988 .

[6]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[7]  J. Fuchs SOME FURTHER RESULTS ON THE RECOVERY ALGORITHMS , 2005 .

[8]  J. Fuchs More on sparse representations in arbitrary bases , 2003 .

[9]  Jean-Jacques Fuchs,et al.  Application of the Global Matched Filter to Stap Data an Efficient Algorithmic Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[11]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[12]  Martin J. Wainwright,et al.  Using linear programming to Decode Binary linear codes , 2005, IEEE Transactions on Information Theory.

[13]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[14]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[15]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[16]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[17]  Pascal Frossard,et al.  A posteriori quantization of progressive matching pursuit streams , 2004, IEEE Transactions on Signal Processing.

[18]  Jean-Jacques Fuchs Extension of the Pisarenko method to sparse linear arrays , 1997, IEEE Trans. Signal Process..