Multiscale modeling methods

[1]  M. Arita,et al.  Sensitivity analysis of scanning microwave microscopy for nano-scale dopant measurements in Si , 2012 .

[2]  E. O’Reilly,et al.  Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides , 2012 .

[3]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[4]  G. Henkelman,et al.  Hybrid density functional theory band structure engineering in hematite. , 2011, The Journal of chemical physics.

[5]  Seungwu Han,et al.  Hybrid functional study on structural and electronic properties of oxides , 2011 .

[6]  T. Kenny,et al.  What is the Young's Modulus of Silicon? , 2010, Journal of Microelectromechanical Systems.

[7]  T. Uda,et al.  First-principles supercell calculations for simulating a shallow donor state in Si , 2009 .

[8]  G. Kresse,et al.  Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors , 2009 .

[9]  M. Uenuma,et al.  Temperature-independent silicon waveguide optical filter. , 2009, Optics letters.

[10]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[11]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[12]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[13]  K. Schulten,et al.  Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor , 2006 .

[14]  H. Ueda,et al.  Electronic structures of DNA molecules and their alignment control on Si(100) substrates with one–dimensional lattices , 2006 .

[15]  T. Motooka,et al.  Molecular-dynamics simulations of nucleation and crystallization in supercooled liquid silicon: Temperature-gradient effects , 2004 .

[16]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[17]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[18]  R. Nieminen,et al.  Convergence of supercell calculations for point defects in semiconductors: Vacancy in silicon , 1998 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[21]  Oshiyama,et al.  Vacancy in Si: Successful description within the local-density approximation. , 1992, Physical review letters.

[22]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[23]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[24]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[25]  E. Benes,et al.  Measurements of the velocity spectrum of sputtered Na from a NaI target by a Doppler‐shift laser spectrometer , 1977 .

[26]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[27]  J. Grepstad,et al.  Anisotropic work function of clean and smooth low-index faces of aluminium , 1976 .

[28]  P. Gartland,et al.  Photoelectric Work Function of a Copper Single Crystal for the (100), (110), (111), and (112) Faces , 1972 .

[29]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[30]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[31]  F. Himpsel Angle-resolved measurements of the photoemission of electrons in the study of solids , 1983 .

[32]  L. Ley Angular resolved photoemission and the band structure of solids , 1979 .

[33]  L. Ley,et al.  Photoemission in Solids I , 1978 .

[34]  L. Ballentine,et al.  Qualitative Methods in Quantum Theory , 1977 .