Quantum statistical mechanics of dissolving Abelian Higgs vortices

The quantum partition function for Abelian Higgs vortices at high density—the regime of dissolving vortices—is calculated explicitly, using spectral data for the Beltrami Laplacian on the N-vortex moduli space CPN with a scaled Fubini–Study metric. From the partition function, the pressure of the vortex gas is derived. There are three asymptotic regimes—High, Intermediate and Low Temperature. The phase crossover from Intermediate to Low Temperature is modelled by a Bessel function. In the Low Temperature regime the free energy is not extensive but is proportional to N 2.

[1]  J. Speight,et al.  The geometry of the space of vortices on a two-sphere in the Bradlow limit , 2022, 2210.00966.

[2]  N. Manton Quantum statistical mechanics of vortices , 2022, Journal of Physics A: Mathematical and Theoretical.

[3]  A. Tononi Scattering theory and equation of state of a spherical two-dimensional Bose gas , 2022, Physical Review A.

[4]  L. Salasnich,et al.  Bose-Einstein Condensation on the Surface of a Sphere. , 2019, Physical review letters.

[5]  Q. Guo,et al.  Thermodynamics of the noninteracting Bose gas in a two-dimensional box. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Y. Shnir Topological solitons , 2012, Physics of Particles and Nuclei Letters.

[7]  J. Baptista On the L2-metric of vortex moduli spaces , 2010, 1003.1296.

[8]  H. Ren The Virial Expansion of a Dilute Bose Gas in Two Dimensions , 2003, cond-mat/0307342.

[9]  N. Manton,et al.  The dynamics of vortices on S2 near the Bradlow limit , 2002, hep-th/0208001.

[10]  N. Manton,et al.  Volume of Vortex Moduli Spaces , 1998, hep-th/9807017.

[11]  E. J. J. Rensburg Virial coefficients for hard discs and hard spheres , 1993 .

[12]  N. Manton Statistical mechanics of vortices , 1993 .

[13]  S. Bradlow Vortices in holomorphic line bundles over closed Kähler manifolds , 1990 .

[14]  M. Schick Two-Dimensional System of Hard-Core Bosons , 1971 .

[15]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[16]  T. M. Samols Vortex scattering , 1992 .

[17]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .