An Ultra-Wideband Low Noise Amplifier with Air-suspended RF MEMS Inductors

This paper presents the design and simulation of a CMOS ultra-wideband differential low noise amplifier with air-suspended MEMS inductors substituting standard planar spiral inductors. Air-suspended MEMS inductors offer higher quality inductance and higher frequency of operation when compared to monolithic spiral planar inductors. This extends the capabilities of a mixed-signal CMOS process, allowing for a high gain, full spectrum, 3.1-10.6 GHz UWB low noise amplifier. The basic architecture of the LNA designed herein exhibits a differential amplifier core with active input and output impedance matching. Simulations reveal that the LNA maintains a gain of 13.0 dB with a plusmn0.3 dB ripple over the band of 3.1-10.6 GHz. Despite the use of an active input matching stage, the LNA achieved a simulated noise figure ranging from 3.5-4.2 dB over the band of operation. The input and output active matching stages maintain less than -10 dB reflection coefficients with a 50 Omega termination over the desired frequency range of operation

[1]  Sungyong Jung,et al.  A two-stage cascode CMOS LNA for UWB wireless systems , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[2]  L. L. Wai,et al.  Mixed-mode S-parameter characterization of differential structures , 2003, Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003).

[3]  Songcheol Hong,et al.  Fully integrated low phase-noise VCOs with on-chip MEMS inductors , 2003 .

[4]  W. Eisenstadt,et al.  Combined differential and common-mode scattering parameters: theory and simulation , 1995 .

[5]  K. Soumyanath,et al.  Enabling high-performance mixed-signal system-on-a-chip (SoC) in high performance logic CMOS technology , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[6]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005, IEEE Journal of Solid-State Circuits.

[7]  Huey-Ru Chuang,et al.  0.18 μm 3-6 GHz CMOS broadband LNA for UWB radio , 2005 .

[8]  Changwan Kim,et al.  Ultra-wideband CMOS low noise amplifier , 2005 .

[9]  Eric Beyne,et al.  MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’ , 2003 .

[10]  D.B.M. Klaassen,et al.  Accurate thermal noise model for deep-submicron CMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[11]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[12]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[13]  Sungyong Jung,et al.  Ultra wideband CMOS low noise amplifier with active input matching , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[14]  Ranjit Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS , 2004, CICC.

[15]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[16]  Sungyong Jung,et al.  CMOS VCO & LNA implemented by air-suspended on-chip RF MEMS LC , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[17]  Brian Ellis The Design of CMOS Radio-Frequency Integrated Circuits , 2004 .

[18]  Sungyong Jung,et al.  Design of CMOS UWB low noise amplifier with cascode feedback , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..