Global coccolithophore diversity: Drivers and future change

Abstract We use the MAREDAT global compilation of coccolithophore species distribution and combine them with observations of climatological environmental conditions to determine the global-scale distribution of coccolithophore species diversity, its underlying drivers, and potential future changes. To this end, we developed a feed-forward neural network, which predicts 78% of the observed variance in coccolithophore diversity from environmental input variables (temperature, PAR, nitrate, silicic acid, mixed layer depth, excess phosphate (P∗) and chlorophyll). Light and temperature are the strongest predictors of coccolithophore diversity. Coccolithophore diversity is highest in the low latitudes, where coccolithophores are a relatively dominant component of the total phytoplankton community. Particularly high diversity is predicted in the western equatorial Pacific and the southern Indian Ocean, with additional peaks at approximately 30°N and 30°S. The global, zonal mean pattern is dominated by the Pacific Ocean, which shows a clear latitudinal gradient with diversity peaking at the equator, whereas in the Atlantic Ocean diversity is highest in the subtropics. We find a unimodal relationship between coccolithophore diversity and biomass, as has previously been observed for total phytoplankton assemblages. In contrast, diversity shows a negative relationship with total chlorophyll. Applying our diversity model to projections from the CMIP5 climate models, we project an increase in the diversity of coccolithophore assemblages by the end of this century.

[1]  J. Connell Diversity in tropical rain forests and coral reefs. , 1978, Science.

[2]  K. Baumann,et al.  Vertical and lateral variations in coccolithophore community structure across the subtropical frontal zone in the South Atlantic Ocean , 2008 .

[3]  L. Riemann,et al.  Global patterns of diversity and community structure in marine bacterioplankton , 2006, Molecular ecology.

[4]  S. Gasparini,et al.  Probing diversity in the plankton: using patterns in Tintinnids (planktonic marine ciliates) to identify mechanisms , 2006 .

[5]  E. Marañón,et al.  Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea , 1997 .

[6]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[7]  Toby Tyrrell,et al.  A modelling study of Emiliania huxleyi in the NE atlantic , 1996 .

[8]  Stephanie Dutkiewicz,et al.  Patterns of Diversity in Marine Phytoplankton , 2010, Science.

[9]  M. Willig,et al.  The Relationship Between Productivity and Species Richness , 1999 .

[10]  A. Goldstein,et al.  Volatile Organic Compound Measurements at Trinidad Head, California, during Itct 2k2: Analysis of Sources, Atmospheric Composition, and Aerosol Residence Times , 2004 .

[11]  Walter Jetz,et al.  Global patterns and predictors of marine biodiversity across taxa , 2010, Nature.

[12]  Seymour Geisser,et al.  The Predictive Sample Reuse Method with Applications , 1975 .

[13]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[14]  Beverly E. Law,et al.  Climatic versus biotic constraints on carbon and water fluxes in seasonally drought‐affected ponderosa pine ecosystems , 2004 .

[15]  T. Tyrrell,et al.  Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic Ocean , 2011 .

[16]  P. C. Reid,et al.  Reorganization of North Atlantic Marine Copepod Biodiversity and Climate , 2002, Science.

[17]  M. Loreau,et al.  Global relationship between phytoplankton diversity and productivity in the ocean , 2014, Nature Communications.

[18]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[19]  M. Heinle The effects of light, temperature andnutrients on coccolithophores andimplications for biogeochemical models , 2013 .

[20]  N. Metzl,et al.  Sensitivity of coccolithophores to carbonate chemistry and ocean acidification , 2011, Nature.

[21]  Marius N. Müller,et al.  Effects of long-term high CO 2 exposure on two species of coccolithophores , 2009 .

[22]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[23]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[24]  Dawn M. Kaufman,et al.  LATITUDINAL GRADIENTS OF BIODIVERSITY:Pattern,Process,Scale,and Synthesis , 2003 .

[25]  C. S. Holling,et al.  Regime Shifts, Resilience, and Biodiversity in Ecosystem Management , 2004 .

[26]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[27]  U. Riebesell,et al.  Adaptation of a globally important coccolithophore to ocean warming and acidification , 2014 .

[28]  H. Stibor,et al.  The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities , 2011 .

[29]  Colleen J. O'Brien,et al.  Ecological niches of open ocean phytoplankton taxa , 2015 .

[30]  T. Tyrrell,et al.  Emiliania huxleyi: bloom observations and the conditions that induce them , 2004 .

[31]  P. Quinn,et al.  Morphological variation in the deep ocean-dwelling coccolithophore Florisphaera profunda (Haptophyta) , 2005 .

[32]  I. Probert,et al.  A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation , 2005 .

[33]  S. J. Qin,et al.  A statistical perspective of neural networks for process modeling and control , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[34]  M. Follows,et al.  Dispersal, eddies, and the diversity of marine phytoplankton , 2013 .

[35]  E. Paasche A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions , 2001 .

[36]  Paul G. Falkowski,et al.  The role of nutricline depth in regulating the ocean carbon cycle , 2008, Proceedings of the National Academy of Sciences.

[37]  P. Wal,et al.  Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi , 1995 .

[38]  George C. Hurtt,et al.  Nonbiological Gradients in Species Richness and a Spurious Rapoport Effect , 1994, The American Naturalist.

[39]  D. J. Franklin,et al.  Growth rates of six coccolithophorid strains as a function of temperature , 2008 .

[40]  Michele Scardi,et al.  Advances in neural network modeling of phytoplankton primary production , 2001 .

[41]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[42]  Scott C. Doney,et al.  Historical and future trends in ocean climate and biogeochemistry , 2014 .

[43]  Taro Takahashi,et al.  Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data , 2009 .

[44]  W. Balch,et al.  Prediction of pelagic calcification rates using satellite measurements , 2007 .

[45]  Andrew Gonzalez,et al.  The functional role of producer diversity in ecosystems. , 2011, American journal of botany.

[46]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[47]  Jef Huisman,et al.  Global biodiversity patterns of marine phytoplankton and zooplankton , 2004, Nature.

[48]  Louis Legendre,et al.  Marine biodiversity, ecosystem functioning, and carbon cycles , 2010, Proceedings of the National Academy of Sciences.

[49]  H. Okada,et al.  Spatial dynamics of coccolithophore assemblages in the Equatorial Western-Central Pacific Ocean , 2000 .

[50]  R. Jordan,et al.  A revised classification scheme for living haptophytes , 2004 .

[51]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[52]  H. Okada,et al.  Community Structure of Coccolithophores in the Photic Layer of the Mid-Pacific , 1974 .

[53]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[54]  E. Barbier,et al.  Impacts of Biodiversity Loss on Ocean Ecosystem Services , 2006, Science.

[55]  F. G. Figueiras,et al.  Species richness in marine phytoplankton communities is not correlated to ecosystem productivity , 2013 .

[56]  Corinne Le Quéré,et al.  Phytoplankton competition during the spring bloom in four Plankton Functional Type Models , 2012 .

[57]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[58]  R. Whittaker,et al.  Scale and species richness: towards a general, hierarchical theory of species diversity , 2001 .

[59]  J. Witman,et al.  The relationship between regional and local species diversity in marine benthic communities: a global perspective. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  James H Brown,et al.  A latitudinal diversity gradient in planktonic marine bacteria , 2008, Proceedings of the National Academy of Sciences.

[61]  U. Riebesell,et al.  Coccolithophores and calcite saturation state in the Baltic and Black Seas , 2007 .

[62]  Christopher P. Gallienne,et al.  Using neural networks to predict surface zooplankton biomass along a 50°N to 50°S transect of the Atlantic , 2001 .

[63]  H. Bouman,et al.  Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea , 2009 .

[64]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[65]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[66]  A. Winter,et al.  Biogeography of living coccolithophores in ocean waters , 1994 .

[67]  C. Brown,et al.  Poleward expansion of the coccolithophore Emiliania huxleyi , 2014 .

[68]  M. Follows,et al.  Maximal feeding with active prey-switching: A kill-the-winner functional response and its effect on global diversity and biogeography , 2014 .

[69]  Russell G. Death,et al.  An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data , 2004 .

[70]  B. Worm,et al.  Biodiversity, productivity and stability in real food webs , 2003 .

[71]  Taro Takahashi,et al.  Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations , 2014 .

[72]  Can Ozan Tan,et al.  Methodological issues in building, training, and testing artificial neural networks in ecological applications , 2005, q-bio/0510017.

[73]  P. Reich,et al.  Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades , 2012, Science.

[74]  W. Balch Re-evaluation of the physiological ecology of coccolithophores , 2004 .

[75]  Robert Ptacnik,et al.  Diversity predicts stability and resource use efficiency in natural phytoplankton communities , 2008, Proceedings of the National Academy of Sciences.

[76]  U. Riebesell,et al.  Adaptive evolution of a key phytoplankton species to ocean acidification , 2012 .

[77]  K Roy,et al.  Marine latitudinal diversity gradients: tests of causal hypotheses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Andrew McIntyre,et al.  Modern coccolithophores of the Pacific and North Atlantic oceans , 1977 .

[79]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[80]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[81]  E. Marañón,et al.  Marine nano- and microphytoplankton diversity: redrawing global patterns from sampling-standardized data , 2015 .

[82]  S. Harrison,et al.  Regional effects as important determinants of local diversity in both marine and terrestrial systems , 2013 .

[83]  Julian D. Olden,et al.  Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks , 2002 .

[84]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[85]  Colleen J. O'Brien,et al.  Global marine plankton functional type biomass distributions: coccolithophores , 2012 .

[86]  J. Waddington,et al.  Cutover peatlands: A persistent source of atmospheric CO2 , 2002 .

[87]  Susan L. Williams,et al.  Functional consequences of realistic biodiversity changes in a marine ecosystem , 2008, Proceedings of the National Academy of Sciences.

[88]  Kevin J Gaston,et al.  Climate, energy and diversity , 2006, Proceedings of the Royal Society B: Biological Sciences.

[89]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[90]  I. Zondervan The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review , 2007 .

[91]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .

[92]  J. Chave,et al.  Latitudinal phytoplankton distribution and the neutral theory of biodiversity , 2013 .

[93]  Toby Tyrrell,et al.  Phytoplankton Calcification in a High-CO2 World , 2008, Science.

[94]  M. Follows,et al.  Understanding predicted shifts in diazotroph biogeography using resource competition theory , 2014 .

[95]  J. Lamarque,et al.  Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation , 2006 .

[96]  P. Falkowski,et al.  Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids , 2002 .

[97]  A. Winter,et al.  Distribution of living coccolithophore assemblages in the Gulf of Elat ('Aqaba) , 1979 .

[98]  W. Prell,et al.  Environmental controls on the geographic distribution of zooplankton diversity , 1999, Nature.

[99]  P. C. Reid,et al.  A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years , 2007 .

[100]  M. Rosenzweig Species Diversity Gradients: We Know More and Less Than We Thought , 1992 .

[101]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[102]  C. Mobley,et al.  Neural network training: Using untransformed or log‐transformed training data for the inversion of ocean colour spectra? , 2006 .

[103]  Andreas Oschlies,et al.  Global Patterns of Predator Diversity in the Open Oceans , 2005, Science.

[104]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[105]  M. Pahlow,et al.  Top-down control of marine phytoplankton diversity in a global ecosystem model , 2012 .

[106]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[107]  P. I. Miller,et al.  Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997 , 2003 .

[108]  A. Winter,et al.  EXPERIMENTAL EVIDENCE FOR THE SPECIES CHARACTER OF CALCIDISCUS LEPTOPORUS MORPHOTYPES , 2003 .

[109]  K. Gross,et al.  Does Species Richness Drive Community Production or Vice Versa? Reconciling Historical and Contemporary Paradigms in Competitive Communities , 2007, The American Naturalist.