A MUSCL method satisfying all the numerical entropy inequalities
暂无分享,去创建一个
[1] Huanan Yang. Nonlinear wave analysis and convergence of MUSCL schemes , 1990 .
[2] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[3] N. N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .
[4] S. Osher,et al. On the convergence of difference approximations to scalar conservation laws , 1988 .
[5] Y. Giga,et al. A kinetic construction of global solutions of first order quasilinear equations , 1983 .
[6] B. Perthame,et al. A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .
[7] Richard Sanders,et al. High resolution staggered mesh approach for nonlinear hyperbolic systems of conser-vation laws , 1992 .
[8] Benoît Perthame,et al. Un exemple de méthode MUSCL satisfaisant toutes les inégalités d'entropie numériques , 1993 .
[9] Jean-Paul Vila. An analysis of a class of second-order accurate Godunov-Type schemes , 1989 .
[10] Sukumar Chakravarthy,et al. High Resolution Schemes and the Entropy Condition , 1984 .
[11] Yann Brenier,et al. The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .
[12] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[13] Thierry Gallouët,et al. Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .
[14] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[15] Tamir Tassa,et al. The convergence rate of Godunov type schemes , 1994 .
[16] Yann Brenier,et al. Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .
[17] Jean-Paul Vila,et al. Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes , 1994 .
[18] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[19] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[20] Jérôme Jaffré,et al. CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .
[21] Bernardo Cockburn,et al. An error estimate for finite volume methods for multidimensional conservation laws , 1994 .
[22] S. Osher,et al. One-sided difference approximations for nonlinear conservation laws , 1981 .
[23] Frédéric Coquel,et al. Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .
[24] Anders Szepessy,et al. Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .
[25] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[26] E. Tadmor. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .
[27] Stanley Osher,et al. Convergence of Generalized MUSCL Schemes , 1985 .
[28] Chi-Wang Shu,et al. On a cell entropy inequality for discontinuous Galerkin methods , 1994 .
[29] Y. Brenier. Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .