A MUSCL method satisfying all the numerical entropy inequalities

We consider here second-order finite volume methods for one-dimensional scalar conservation laws. We give a method to determine a slope reconstruction satisfying all the exact numerical entropy inequalities. It avoids inhomogeneous slope limitations and, at least, gives a convergence rate of Δx l/2 . It is obtained by a theory of second-order entropic projections involving values at the nodes of the grid and a variant of error estimates, which also gives new results for the first-order Engquist-Osher scheme.

[1]  Huanan Yang Nonlinear wave analysis and convergence of MUSCL schemes , 1990 .

[2]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[3]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[4]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[5]  Y. Giga,et al.  A kinetic construction of global solutions of first order quasilinear equations , 1983 .

[6]  B. Perthame,et al.  A kinetic equation with kinetic entropy functions for scalar conservation laws , 1991 .

[7]  Richard Sanders,et al.  High resolution staggered mesh approach for nonlinear hyperbolic systems of conser-vation laws , 1992 .

[8]  Benoît Perthame,et al.  Un exemple de méthode MUSCL satisfaisant toutes les inégalités d'entropie numériques , 1993 .

[9]  Jean-Paul Vila An analysis of a class of second-order accurate Godunov-Type schemes , 1989 .

[10]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[11]  Yann Brenier,et al.  The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  Thierry Gallouët,et al.  Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .

[14]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[15]  Tamir Tassa,et al.  The convergence rate of Godunov type schemes , 1994 .

[16]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[17]  Jean-Paul Vila,et al.  Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes , 1994 .

[18]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[19]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[20]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[21]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[22]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[23]  Frédéric Coquel,et al.  Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .

[24]  Anders Szepessy,et al.  Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .

[25]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[26]  E. Tadmor Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .

[27]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[28]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[29]  Y. Brenier Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .