Valid inequalities for separable concave constraints with indicator variables
暂无分享,去创建一个
[1] Panos M. Pardalos,et al. Minimum concave-cost network flow problems: Applications, complexity, and algorithms , 1991 .
[2] Claudio Gentile,et al. Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..
[3] A. Borghetti,et al. An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir , 2008, IEEE Transactions on Power Systems.
[4] Christian Kirches,et al. Mixed-integer nonlinear optimization*† , 2013, Acta Numerica.
[5] Martin W. P. Savelsbergh,et al. Lifted flow cover inequalities for mixed 0-1 integer programs , 1999, Math. Program..
[6] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[7] Halit Üster,et al. Optimization for Design and Operation of Natural Gas Transmission Networks , 2014 .
[8] Alexander Martin,et al. Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..
[9] Clyde L. Monma,et al. Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..
[10] Alper Atamtürk,et al. A study of the lot-sizing polytope , 2004, Math. Program..
[11] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[12] Egon Balas. Disjunctive Programming , 2010, 50 Years of Integer Programming.
[13] Laurence A. Wolsey,et al. Uncapacitated lot-sizing: The convex hull of solutions , 1984 .
[14] Claudia D’Ambrosio,et al. Ibm Research Report an Algorithmic Framework for Minlp with Separable Non-convexity an Algorithmic Framework for Minlp with Separable Non-convexity , 2022 .
[15] Daniel Bienstock,et al. Cutting-Planes for Optimization of Convex Functions over Nonconvex Sets , 2014, SIAM J. Optim..
[16] Martin W. P. Savelsbergh,et al. Fixed-Charge Transportation with Product Blending , 2012, Transp. Sci..
[17] James R. Luedtke,et al. Effective separation of disjunctive cuts for convex mixed integer nonlinear programs , 2010 .
[18] Sanjay Mehrotra,et al. A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..
[19] Isaac Siwale. ON GLOBAL OPTIMIZATION , 2015 .
[20] Alper Atamtürk,et al. Sequence Independent Lifting for Mixed-Integer Programming , 2004, Oper. Res..
[21] Jeff T. Linderoth,et al. On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators , 2013, IPCO.
[22] A. Fügenschuh,et al. A New Class of Valid Inequalities for Nonlinear Network Design Problems , 2013 .
[23] Nikolaos V. Sahinidis,et al. BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..
[24] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[25] Laurence A. Wolsey,et al. Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..
[26] Timo Berthold,et al. Extending a CIP framework to solve MIQCPs , 2012 .
[27] W. Zangwill. Minimum Concave Cost Flows in Certain Networks , 1968 .
[28] George L. Nemhauser,et al. Minimum concave cost flow over a grid network , 2014, Mathematical Programming.
[29] James R. Luedtke,et al. Valid inequalities for separable concave constraints with indicator variables , 2018, Math. Program..
[30] Andrea Lodi,et al. Mathematical programming techniques in water network optimization , 2015, Eur. J. Oper. Res..
[31] Martin W. P. Savelsbergh,et al. Sequence Independent Lifting in Mixed Integer Programming , 2000, J. Comb. Optim..
[32] Laurence A. Wolsey,et al. Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..
[33] Pierre Bonami,et al. Lift-and-Project Cuts for Mixed Integer Convex Programs , 2011, IPCO.
[34] Panos M. Pardalos,et al. A polynomial time solvable concave network flow problem , 1993, Networks.
[35] Alper Atamtürk,et al. Conic mixed-integer rounding cuts , 2009, Math. Program..
[36] Juan Pablo Vielma,et al. Intersection cuts for nonlinear integer programming: convexification techniques for structured sets , 2013, Mathematical Programming.
[37] Sven Leyffer,et al. Mixed Integer Nonlinear Programming , 2011 .
[38] James R. Luedtke,et al. Strong-branching inequalities for convex mixed integer nonlinear programs , 2014, Comput. Optim. Appl..
[39] Jeff T. Linderoth,et al. Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .
[40] S. Ulbrich,et al. MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .
[41] Christodoulos A. Floudas,et al. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.