Valid inequalities for separable concave constraints with indicator variables

We study valid inequalities for a set relevant for optimization models that have both binary indicator variables, which indicate positivity of associated continuous variables, and separable concave constraints. Such models reduce to a mixed-integer linear program MILP when the concave constraints are ignored, and to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms to solve such problems to global optimality, relaxations are traditionally obtained by using valid inequalities for the MILP ignoring the concave constraints, and by independently relaxing each concave constraint using the secant obtained from the bounds of the associated variable. We propose a technique to obtain valid inequalities that are based on both the MILP and the concave constraints. We begin by analyzing a low-dimensional set that contains a single binary indicator variable, a single concave constraint, and three continuous variables. Using this analysis, for the canonical Single Node Flow Set SNFS, we demonstrate how to "tilt" a given valid inequality for the SNFS to obtain additional valid inequalities that account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities on a fixed plus concave cost transportation problem. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed integer nonlinear programs.

[1]  Panos M. Pardalos,et al.  Minimum concave-cost network flow problems: Applications, complexity, and algorithms , 1991 .

[2]  Claudio Gentile,et al.  Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..

[3]  A. Borghetti,et al.  An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir , 2008, IEEE Transactions on Power Systems.

[4]  Christian Kirches,et al.  Mixed-integer nonlinear optimization*† , 2013, Acta Numerica.

[5]  Martin W. P. Savelsbergh,et al.  Lifted flow cover inequalities for mixed 0-1 integer programs , 1999, Math. Program..

[6]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[7]  Halit Üster,et al.  Optimization for Design and Operation of Natural Gas Transmission Networks , 2014 .

[8]  Alexander Martin,et al.  Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..

[9]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[10]  Alper Atamtürk,et al.  A study of the lot-sizing polytope , 2004, Math. Program..

[11]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[12]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[13]  Laurence A. Wolsey,et al.  Uncapacitated lot-sizing: The convex hull of solutions , 1984 .

[14]  Claudia D’Ambrosio,et al.  Ibm Research Report an Algorithmic Framework for Minlp with Separable Non-convexity an Algorithmic Framework for Minlp with Separable Non-convexity , 2022 .

[15]  Daniel Bienstock,et al.  Cutting-Planes for Optimization of Convex Functions over Nonconvex Sets , 2014, SIAM J. Optim..

[16]  Martin W. P. Savelsbergh,et al.  Fixed-Charge Transportation with Product Blending , 2012, Transp. Sci..

[17]  James R. Luedtke,et al.  Effective separation of disjunctive cuts for convex mixed integer nonlinear programs , 2010 .

[18]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[19]  Isaac Siwale ON GLOBAL OPTIMIZATION , 2015 .

[20]  Alper Atamtürk,et al.  Sequence Independent Lifting for Mixed-Integer Programming , 2004, Oper. Res..

[21]  Jeff T. Linderoth,et al.  On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators , 2013, IPCO.

[22]  A. Fügenschuh,et al.  A New Class of Valid Inequalities for Nonlinear Network Design Problems , 2013 .

[23]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[24]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[25]  Laurence A. Wolsey,et al.  Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..

[26]  Timo Berthold,et al.  Extending a CIP framework to solve MIQCPs , 2012 .

[27]  W. Zangwill Minimum Concave Cost Flows in Certain Networks , 1968 .

[28]  George L. Nemhauser,et al.  Minimum concave cost flow over a grid network , 2014, Mathematical Programming.

[29]  James R. Luedtke,et al.  Valid inequalities for separable concave constraints with indicator variables , 2018, Math. Program..

[30]  Andrea Lodi,et al.  Mathematical programming techniques in water network optimization , 2015, Eur. J. Oper. Res..

[31]  Martin W. P. Savelsbergh,et al.  Sequence Independent Lifting in Mixed Integer Programming , 2000, J. Comb. Optim..

[32]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[33]  Pierre Bonami,et al.  Lift-and-Project Cuts for Mixed Integer Convex Programs , 2011, IPCO.

[34]  Panos M. Pardalos,et al.  A polynomial time solvable concave network flow problem , 1993, Networks.

[35]  Alper Atamtürk,et al.  Conic mixed-integer rounding cuts , 2009, Math. Program..

[36]  Juan Pablo Vielma,et al.  Intersection cuts for nonlinear integer programming: convexification techniques for structured sets , 2013, Mathematical Programming.

[37]  Sven Leyffer,et al.  Mixed Integer Nonlinear Programming , 2011 .

[38]  James R. Luedtke,et al.  Strong-branching inequalities for convex mixed integer nonlinear programs , 2014, Comput. Optim. Appl..

[39]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .

[40]  S. Ulbrich,et al.  MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .

[41]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.