Nanowire based heterostructures: fundamental properties and applications

In this paper the fundamental properties of heterostructures based on semiconductor nanowires synthesized with molecular beam epitaxy are reviewed. Special focus is given on surface passivation mechanisms with radial epitaxial passivation shells. The growth of radial p-i-n junctions in GaAs nanowires is discussed. Characterization of such nanowires on a single nanowire level is presented. The fundamental limits of single nanowire optical device performance are obtained by numerical simulation and discussed.

[1]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[2]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[3]  H. Ruda,et al.  Polarization-sensitive optical phenomena in thick semiconducting nanowires , 2006 .

[4]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[5]  D. Guidotti,et al.  Model for degradation of band‐gap photoluminescence in GaAs , 1988 .

[6]  H. Okumura,et al.  Raman Scattering Determination of Free Carrier Concentration and Surface Depletion Layer in (100) p-GaAs Grown by Molecular-Beam Epitaxy , 1986 .

[7]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[8]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[9]  A. F. Morral Gold-Free GaAs Nanowire Synthesis and Optical Properties , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[11]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[12]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[13]  Shapira,et al.  Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. , 1992, Physical review. B, Condensed matter.

[14]  Stroscio,et al.  Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. , 1987, Physical review letters.

[15]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[16]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[17]  D. Kyser,et al.  Measurement of Diffusion Lengths in Direct‐Gap Semiconductors by Electron‐Beam Excitation , 1967 .

[18]  Zhiyong Fan,et al.  Challenges and prospects of nanopillar-based solar cells , 2009 .

[19]  M. Yamaguchi,et al.  Surface Band Bending Effects on Photoluminescence Intensity in n-InP Schottky and MIS Diodes , 1981 .

[20]  W. Mönch,et al.  Oxygen and hydrogen adsorption on GaAs(110) , 1983 .

[21]  E. W. Williams,et al.  Temperature Dependence of Photoluminescence in Cadmium‐Doped Epitaxial GaAs , 1967 .

[22]  D. Guidotti,et al.  Model for degradation of band gap photo-luminescence in GaAs , 1989 .

[23]  T. Fukui,et al.  Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy , 2009 .

[24]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[25]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[26]  F. Himpsel,et al.  The oxidation of GaAs(110): A reevaluation , 1984 .

[27]  C. Su,et al.  Photoemission studies of the interaction of oxygen with GaAs(110) , 1982 .

[28]  J. Harris,et al.  Electrical properties of lateral p - n junctions formed on patterned (110) GaAs substrates , 1997 .

[29]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[30]  A. Kandala,et al.  General theoretical considerations on nanowire solar cell designs , 2009 .

[31]  Jordi Arbiol,et al.  Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires , 2008 .

[32]  Tohru S. Suzuki,et al.  Degradation of photoluminescence intensity caused by excitation‐enhanced oxidation of GaAs surfaces , 1977 .

[33]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[34]  M. Sturge Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV , 1962 .

[35]  G. Mugny,et al.  Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates. , 2011, Nano letters.

[36]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[37]  G. Abstreiter,et al.  Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. , 2008, Small.

[38]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[39]  J. Morante,et al.  Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .

[40]  L. Tsakalakos Nanostructures for photovoltaics , 2008 .

[41]  J. Morante,et al.  InAs quantum dot arrays decorating the facets of GaAs nanowires. , 2010, ACS nano.

[42]  K. Hirakawa,et al.  Conduction‐type conversion in Si‐doped (311)A GaAs grown by molecular beam epitaxy , 1995 .

[43]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[44]  Michael Grätzel,et al.  Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .