Heap Construction in the Parallel Comparison Tree Model

I show how to put n values into heap order in O(log log n) time using n/ log log n processors in the parallel comparison tree model of computation, and in O(α(n)) time on n/α(n) processors, in the randomized parallel comparison tree model, where α(n) is an inverse of Ackerman's function. I prove similar bounds for the related problem of putting n values into a min-max heap.

[1]  Svante Carlsson,et al.  Parallel Complexity of Heaps and Min-Max Heaps , 1992, LATIN.

[2]  Uzi Vishkin,et al.  Strutural Parallel Algorithmics , 1991, ICALP.

[3]  Nicola Santoro,et al.  Min-max heaps and generalized priority queues , 1986, CACM.

[4]  Yossi Azar,et al.  Parallel selection , 1990, Discret. Appl. Math..

[5]  János Komlós,et al.  Optimal Parallel Selection has Complexity O(Log Log n) , 1989, J. Comput. Syst. Sci..

[6]  Leslie G. Valiant,et al.  Parallelism in Comparison Problems , 1975, SIAM J. Comput..

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  Rüdiger Reischuk Probabilistic Parallel Algorithms for Sorting and Selection , 1985, SIAM J. Comput..

[9]  Uzi Vishkin,et al.  Recursive *-tree parallel data-structure , 1989, 30th Annual Symposium on Foundations of Computer Science.

[10]  Weixiong Zhang,et al.  Building Heaps in Parallel , 1991, Inf. Process. Lett..