Arithmetic on abelian and Kummer varieties
暂无分享,去创建一个
[1] George R. Kempf. Multiplication Over Abelian Varieties , 1988 .
[2] Damien Robert,et al. Fonctions thêta et applications à la cryptographie , 2010 .
[3] Shoji Koizumi. Theta Relations and Projective Normality of Abelian Varieties , 1976 .
[4] Scott A. Vanstone,et al. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.
[5] Daniel R. L. Brown. Multi-Dimensional Montgomery Ladders for Elliptic Curves , 2006, IACR Cryptol. ePrint Arch..
[6] D. Mumford. Abelian Varieties Tata Institute of Fundamental Research , 1970 .
[7] Pierrick Gaudry,et al. Fast genus 2 arithmetic based on Theta functions , 2007, J. Math. Cryptol..
[8] Jun-ichi Igusa,et al. Equations Defining Abelian Varieties , 1972 .
[9] D. Bernstein. Differential addition chains , 2006 .
[10] Tanja Lange,et al. Kummer Strikes Back: New DH Speed Records , 2014, ASIACRYPT.
[11] David Mumford. On the equations defining abelian varieties. III , 1967 .
[12] David Mumford,et al. Jacobian theta functions and differential equations , 1984 .
[13] Kristin E. Lauter,et al. Genus 2 Curves with Complex Multiplication , 2010, IACR Cryptol. ePrint Arch..
[14] David Lubicz,et al. Computing isogenies between abelian varieties , 2010, Compositio Mathematica.
[15] Craig Costello,et al. Fast Cryptography in Genus 2 , 2013, EUROCRYPT.
[16] Serge Lang,et al. Abelian varieties , 1983 .
[17] Craig Costello,et al. Fast Cryptography in Genus 2 , 2013, Journal of Cryptology.
[18] Herbert Lange,et al. Complex Abelian Varieties , 1992 .
[19] Pierrick Gaudry,et al. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines , 2009, Finite Fields Their Appl..
[20] G. Kempf,et al. LINEAR SYSTEMS ON ABELIAN VARIETIES , 1989 .
[21] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization , 1987 .
[22] Erhard Gottschling,et al. Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades , 1959 .
[23] Tanja Lange,et al. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves , 2005, Applicable Algebra in Engineering, Communication and Computing.
[24] Romain Cosset,et al. Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques. (Applications of theta functions for hyperelliptic curve cryptography) , 2011 .
[25] David Mumford,et al. Varieties Defined by Quadratic Equations , 2010 .
[26] D. Cantor. Computing in the Jacobian of a hyperelliptic curve , 1987 .
[27] D. Mumford. Tata Lectures on Theta I , 1982 .
[28] T. Willmore. Algebraic Geometry , 1973, Nature.
[29] Damien Robert,et al. Computing (l, l)-isogenies in polynomial time on Jacobians of genus 2 curves , 2011, IACR Cryptol. ePrint Arch..
[30] Craig Costello,et al. Jacobian Coordinates on Genus 2 Curves , 2016, Journal of Cryptology.
[31] David Lubicz,et al. Efficient pairing computation with theta functions. ANTS IX , 2010 .
[32] Tanja Lange,et al. Twisted Edwards Curves , 2008, AFRICACRYPT.
[33] David Lubicz,et al. Efficient Pairing Computation with Theta Functions , 2010, ANTS.
[34] Craig Costello,et al. Jacobian Coordinates on Genus 2 Curves , 2014, ASIACRYPT.
[35] D. Mumford,et al. On the equations defining abelian varieties. II , 1967 .
[36] David Kohel. Arithmetic of Split Kummer Surfaces: Montgomery Endomorphism of Edwards Products , 2011, IWCC.
[37] David Lubicz,et al. A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties , 2015, J. Symb. Comput..